Pairs and Triads of points on the Neuberg Cubic connected with Euler Lines and Brocard Axes Isometric Parallel Chords

Bernard Gibert

Created : April 3, 2013
Last update : January 4, 2018

Abstract

The Neuberg cubic K001 has numerous properties but, in this paper, we will focus on those related with Euler lines and Brocard axes of certain triangles. This will characterize interesting pairs, triads and other groups of points and will yield to parallel isometric chords on this remarkable cubic.

1 Preliminaries

The Neuberg cubic K001 is the pivotal isogonal cubic with pivot the infinite point X_{30} of the Euler line (E) of the reference triangle $A B C$. Recall that it is a circular cubic with focus X_{110} and with real asymptote the parallel to (E) at the antipode X_{74} of X_{110} on the circumcircle (O) of $A B C$. It contains a good number of ETC centers and, in particular, the reflection X_{399} of X_{3} about X_{110} which will have a great importance in the sequel.

Among its numerous properties (see [1] for instance), one is well-known and directly related to Euler lines of certain triangles, namely

Proposition 1 The Euler lines $\left(E_{a}\right),\left(E_{b}\right),\left(E_{c}\right)$ of triangles $P B C, P C A, P A B$ concur (at M on $(E))$ if and only if P lies on K 001 (together with (O) and the line at infinity which we do not consider in the sequel)

If Euler lines are replaced by Brocard axes, we have an analogous property which is
Proposition 2 The Brocard axes $\left(B_{a}\right),\left(B_{b}\right),\left(B_{c}\right)$ of triangles $P B C, P C A, P A B$ concur (at M on the Brocard axis (B) of $A B C$) if and only if P lies on K 001 (together with (O) and the line at infinity which we do not consider in the sequel)

We wish to characterize the correspondence between P on K 001 and M on (E) or on (B).
We begin with several lemmas, some well-known and documented, we shall need in this paper.
Lemma 1 (definition of X_{399}) If L_{A}, L_{B}, L_{C} are the parallels at A, B, C to (E) then their reflections $L_{A}^{\prime}, L_{B}^{\prime}, L_{C}^{\prime}$ in the sidelines $B C, C A, A B$ concur at the Parry reflection point X_{399}. See [7].

Recall that X_{399} lies on K 001 and that it is the reflection of $O=X_{3}$ in X_{110}.
Lemma 2 The lines $\left(E_{a}\right)$ and (E) are parallel if and only if P lies on the circum-conic whose isogonal transform is the line passing through X_{399} and the A-vertex of the cevian triangle of X_{323}.

Note that X_{323} is the cevapoint of X_{6} and X_{399}.
Lemma 3 (definition of X_{1138}) The lines $(E),\left(E_{a}\right),\left(E_{b}\right),\left(E_{c}\right)$ are parallel if and only if P is the isogonal conjugate X_{1138} of X_{399}.

In other words, if $P=X_{1138}$ then $M=X_{30}$.

Lemma 4 For any P on K001, the line $P X_{399}$ meets the cubic again at a third point Q which also lies on the line passing through the orthocenter $H=X_{4}$ and X_{30} / P^{*}.

Here, P^{*} is the isogonal conjugate of P (hence on the cubic) and X_{30} / P^{*} is the Ceva conjugate of X_{30} and P^{*} (also on the cubic). The lemma is obvious since two isogonal points on K001 must be collinear with the pivot X_{30} and two X_{30}-Ceva conjugate points must be collinear with the isopivot X_{74}.

2 Neuberg cubic and Euler lines

The correspondence $(P$ on K001) $\mapsto(M$ on $(E))$ is trivial after proposition 1 and it is clear that one chosen point on K001 will give one and only one point M on (E).

We wish now to investigate the correspondence in the "reverse" direction so let us take M on (E).
Proposition 3 The Euler line $\left(E_{a}\right)$ of triangle PBC contains M if and only if P lies on the cubic $\left(K_{a}\right)$ described below.

The two corresponding cubics $\left(K_{b}\right),\left(K_{c}\right)$ are defined likewise.
The result is given by a fairly easy computation. The cubic $\left(K_{a}\right)$ is a circular circum-cubic with focus M, with real asymptote the perpendicular at M to $B C$. It meets (O) at a sixth point O_{a} on the line L_{A} and it contains the vertices A_{e}, A_{i} of the equilateral triangles constructed externally, internally on $B C$ (which is obvious since the Euler lines are then undetermined). Note that (K_{a}) has three concurring asymptotes passing through M hence the polar conic of M must split into the line at infinity and another line.

Since $\left(K_{a}\right)$ has already seven common points with $\operatorname{K001}\left(A, B, C, A_{e}, A_{i}\right.$, circular points J_{1}, J_{2} at infinity), these two cubics must meet at two other points, say P, Q. See figure 1.

Figure 1: K001 and (K_{a})

Remark: we eliminate the case $M=O$ since (K_{a}) would split into the perpendicular bisector of $B C$ and (O).

Proposition 4 For given M on (E), the three cubics $\left(K_{a}\right),\left(K_{b}\right),\left(K_{c}\right)$ belong to a same pencil of circular circum-cubics with singular focus M and asymptotes concurring at M.

This easily derives from the fact that the sum of the three cubics identically vanishes for every point M on the Euler line (E).

Proposition 5 For given M on (E), the three cubics $\left(K_{a}\right),\left(K_{b}\right),\left(K_{c}\right)$ meet again at two points P, Q which are the common points of the line $(L)=N X_{399}$ and the rectangular circum-hyperbola (H) passing through M, where N is the reflection of O in M. See figure 2.

Figure 2: Construction of P, Q

The propositions above yield the following
Theorem 1 For given finite M on (E), there are exactly two points P, Q on K001 such that the Euler lines of the six triangles $P B C, P C A, P A B, Q B C, Q C A, Q A B$ concur at M.

Hence, $(M$ on $(E)) \mapsto((P, Q)$ on K001) is a $(1,2)$ correspondence.

Remarks

1. the knowledge of one of these two points P, Q on K001 gives the other by lemma 4.
2. the use of (L) and (H) gives an easy construction of K001.
3. X_{399} is the coresidual of A, B, C, H in K001.
4. if $M=X_{30}$ we have $N=P=X_{30}$ and then $Q=X_{1138}$ (the isogonal conjugate of X_{399}). Hence, the Euler lines of $X_{1138} B C, X_{1138} C A, X_{1138} A B$ are parallel to (E).

Examples

- with $M=X_{2}$ so $N=X_{381}$ the two points are X_{13}, X_{14}.
- with $M=X_{5}$ so $N=X_{4}$ the two points are X_{4}, X_{1263}.

3 Neuberg cubic and Brocard axes

The configuration is very similar to that with Euler lines and the correspondence (P on K001) \mapsto (M on (B)) is trivial after proposition 2. It is clear that one chosen point on K 001 will give one and only one point M on (B).

We also wish to investigate the correspondence in the "reverse" direction so let us take M on (B).
Proposition 6 The Brocard axis $\left(B_{a}\right)$ of triangle $P B C$ contains M if and only if P lies on the bicircular circum-quartic $\left(Q_{a}\right)$ described below.

The two corresponding cubics $\left(Q_{b}\right),\left(Q_{c}\right)$ are defined likewise.
Remark : when $M=O$, each quartic degenerates into the line at infinity, (O) and a perpendicular bisector of $A B C$ which is not considered in the sequel.
$\left(Q_{a}\right)$ meets the circum-circle at an eight point O_{a} lying on the line trough A and the intercept A^{\prime} of the Brocard axis and the sideline $B C$. It also contains the vertices A_{e}, A_{i} mentioned above. See figure 3 .

Figure 3: K001 and $\left(Q_{a}\right)$

Proposition 7 The sum of these three quartics is the union of the line at infinity and K001.
It follows that each quartic meets K 001 at nine fixed points (namely A, B, C, each circular point at infinity counted twice, two vertices such as A_{e}, A_{i}) hence these must have three other common points say $P_{i}, i=1,2,3$, and one of them is always real. Indeed, for each point P_{i} on K001 and $\left(Q_{a}\right)$, the Brocard axes of triangles $P_{i} B C, P_{i} C A, P_{i} A B$ contain M hence P_{i} must lie on $\left(Q_{b}\right),\left(Q_{c}\right)$ as well. This gives

Proposition 8 For M on (B), there are three points P_{1}, P_{2}, P_{3} on K 001 such that the Brocard axes of triangles $P_{i} B C, P_{i} C A, P_{i} A B$ concur at M.

After some quite heavy computations, we obtain that these three points lie on a same circle C_{M} that also contains X_{110} and X_{399} and whose radical axis with the circum-circle is the line $X_{110} M$. This gives

Theorem 2 Any circle (γ) passing through X_{110} and X_{399} meets K 001 at X_{399} and three other finite points P_{1}, P_{2}, P_{3} such that the nine Brocard axes of triangles $P_{i} B C, P_{i} C A, P_{i} A B$ concur at a certain point M on the Brocard axis (B) of $A B C$. Moreover, M is the intersection of (B) and the radical axis of (γ) and (O), meeting (O) again at N.

Hence, $(M$ on $(B)) \mapsto\left(P_{1}, P_{2}, P_{3}\right.$ on K001) is a $(1,3)$ correspondence. See figure 4.

Figure 4: K001 and the circle (γ)

Examples

- with $M=X_{61}$, the three points are X_{14}, X_{15}, X_{1337} and $N=X_{2380}$.
- with $M=X_{62}$, the three points are X_{13}, X_{16}, X_{1338} and $N=X_{2381}$.

A conic construction of P_{1}, P_{2}, P_{3}
Let M be a point on the Brocard axis and let N be the second intersection of the line $\left(L_{2}\right)=M X_{399}$ with the circumcircle of $A B C$.

The circumcircle C_{M} of N, X_{110}, X_{399} is centered at S on the perpendicular bisector (Δ) of X_{110}, X_{399}. Let S^{\prime} be the reflection of S about the intersection of (Δ) and the Euler line.

The line $\left(L_{1}\right)=S^{\prime} X_{30}$ and its isogonal transform $\left(H_{1}\right)$ meet at two points E_{1}, E_{2} on K001.
$\left(L_{2}\right)$ and $\left(H_{1}\right)$ meet at two points E_{3}, E_{4} and then the rectangular hyperbola (H) passing through $X_{399}, E_{1}, E_{2}, E_{3}, E_{4}$ meets C_{M} at X_{399} and the three requested points P_{1}, P_{2}, P_{3}. See figure 5.

Note that this construction is valid when all the points $E_{1}, E_{2}, E_{3}, E_{4}$ are real.

Figure 5: Construction of P_{1}, P_{2}, P_{3}

4 Another configuration related with Euler lines

4.1 Generalities

There is another related configuration although the locus of common points is not a line but the complicated sextic Q093, namely

Proposition 9 Let $P_{a} P_{b} P_{c}$ be the pedal triangle of P. The Euler lines $\left(E_{a}\right),\left(E_{b}\right),\left(E_{c}\right)$ of triangles $P P_{b} P_{c}, P P_{c} P_{a}, P P_{a} P_{b}$ concur if and only if P lies on K 001 (together with the line at infinity).

Now, given a fixed point $Q=u: v: w$, we seek P such that the Euler line $\left(E_{a}\right)$ of $P P_{b} P_{c}$ contains Q. We find a rectangular hyperbola $\left(C_{a}\right)$ whose asymptotes are parallel to the bisectors of A in $A B C$. Moreover $\left(C_{a}\right)$ contains A, the reflection A_{1} of A in Q (for which the circumcenter of $P P_{b} P_{c}$ is Q) and another point A_{2} (for which the orthocenter of $P P_{b} P_{c}$ is Q) that can be constructed as follows.

If $A_{2}^{\prime}\left(\right.$ resp. $\left.A_{2}^{\prime \prime}\right)$ is the intersection of the parallel at Q to $A B$ (resp. $A C$) with the sideline $A C$ (resp. $A B$) then the perpendiculars at A_{2}^{\prime} to $A C$ and at $A_{2}^{\prime \prime}$ to $A B$ meet at the requested point A_{2}.

Since we know five points on $\left(C_{a}\right)$, its construction can be realized. Note that its center O_{a} lies on the parallel at Q to the line $A Q^{*}$ where Q^{*} is the isogonal conjugate of Q. The reflection A^{\prime} of A in O_{a} lies on the line $Q A_{2}$ and on the parallel at A_{1} to the line $A Q^{*}$. See figure 6.

Thus, for any point P on $\left(C_{a}\right)$, the Euler line $\left(E_{a}\right)$ of $P P_{b} P_{c}$ contains Q. Furthermore, the circumcenter $O_{a}(P)$ and the orthocenter $H_{a}(P)$ of $P P_{b} P_{c}$ lie on two rectangular hyperbolas having their asymptotes parallel to those of $\left(C_{a}\right)$ and passing through A, Q. The former also contains O_{a} and the latter also contains A^{\prime}. See figure 7 .

Two other rectangular hyperbolas $\left(C_{b}\right),\left(C_{c}\right)$ with centers O_{b}, O_{c} are defined likewise and all three generate a net of conics whose Jacobian is in general a focal cubic $J(Q)$ whose orthic line is the line

Figure 6: The rectangular hyperbola $\left(C_{a}\right)$

Figure 7: The rectangular hyperbola $\left(C_{a}\right)$ and the Euler line $\left(E_{a}\right)$
$H Q$, hence the polar conics of H and Q (and consequently of any point on $H Q$) are also rectangular hyperbolas. Note that the infinite point of the line $H Q$ is the third infinite point of $J(Q)$.

When $Q=H$, the three rectangular hyperbolas are in a same pencil hence the Jacobian identically vanishes, see $\S 4.3$ below.

Remarks

1. When Q lies on the Napoleon cubic K 005 , the tangents at A, B, C to $\left(C_{a}\right),\left(C_{b}\right),\left(C_{c}\right)$ concur (on K001) and the triangles $A B C, O_{a} O_{b} O_{c}$ are perspective (at a point also on K 001).
2. In general, Q is not on $J(Q)$ unless it is a point of the McCay cubic K003.
3. The singular focus F of $J(Q)$ lies on the line $H Q$ if and only if Q lies on the parallel at H to one of the asymptotes of K003. In such case, $J(Q)$ is a central focal cubic.

Now, according to the number N of common points $P_{i},(0 \leqslant i \leqslant 4)$ of the three rectangular hyperbolas, the nature of $J(Q)$ can be precised :

N	nature of $J(Q)$
0	an elliptic (non-unicursal) focal cubic
1	a nodal (unicursal) focal cubic whose node is P
2	a line and a circle meeting at these two points
3	three lines through the three points
4	identically vanishes

Let then P be one common point of $\left(C_{a}\right),\left(C_{b}\right),\left(C_{c}\right)$. When we express that $P=p: q: r$ lies on the three hyperbolas, we obtain three conditions which are linear in u, v, w hence, in general, these conditions are not simultaneously realized but, by eliminating the coordinates of Q, we find that P must lie on K001 which is, unsurprisingly, proposition 9.

These conditions are of second degree in p, q, r and the elimination of these gives the locus of Q which is the circular sextic Q093. Hence, for any point Q on Q093, the three rectangular hyperbolas have at least one common point P (on K001) such that the Euler lines $\left(E_{a}\right),\left(E_{b}\right),\left(E_{c}\right)$ concur at Q. See figure 8.

Properties of Q093

Q093 contains H (quadruple), X_{1} and the excenters, X_{30} and the infinite points of the Napoleon cubic K005, $X_{125}, X_{140}, X_{3574}$, the vertices of the orthic triangle, the O-Ceva conjugates of the infinite points of the McCay cubic K003 which are double points on the curve.

According to the position and the nature of Q with respect to Q093 and therefore the number of common points of the three rectangular hyperbolas, we can revisit the nature of $J(Q)$ with some examples given in the next paragraph.

4.2 Some examples of Jacobian

Let Q be a point in the plane.

4.2.1 Q is not on Q093

The three rectangular hyperbolas have no common point and $J(Q)$ is a focal elliptic cubic.
An interesting example is $J\left(X_{3}\right)$ since the cubic contains $X_{3}, X_{20}, X_{30}, X_{74}$ which is the singular focus whose polar conic is the circle also passing through O and X_{20}. The orthic line is the Euler line and the real asymptote is its parallel through X_{110}. See figure 9 .

4.2.2 $\quad Q$ is a simple point on Q093

The three rectangular hyperbolas have one common point P on K 001 and $J(Q)$ is a strophoid with node P.

One case is special and is obtained when $Q=X_{1}$ (or an excenter). Indeed, each rectangular hyperbola splits into one internal bisector of $A B C$ and a perpendicular hence $P=X_{1}$ and $J\left(X_{1}\right)$ also

Figure 8: The circular sextic Q093

Figure 9: The Jacobian $J\left(X_{3}\right)$
contains the three centers of these decomposed hyperbolas. $J\left(X_{1}\right)$ is a strophoid with node X_{1} and the relative Euler lines $\left(E_{a}\right),\left(E_{b}\right),\left(E_{c}\right)$ are the bisectors. The singular focus is the intersection of the lines $X_{1} X_{1361}$ and $X_{3} X_{214}$. See figure 10.

Figure 10: The Jacobian $J\left(X_{1}\right)$

4.2.3 Q is a double point on $Q 093$

The three rectangular hyperbolas have two common points P_{1}, P_{2} on K 001 and $J(Q)$ splits into a line and a circle. There are three double points on Q093 which are represented in green on figures 8 and 11. They are O-Ceva conjugates of the infinite points of the McCay cubic K003 hence they lie on the parallels at H to the asymptotes of K003. They are the common points (apart X_{125}) of the bicevian conic $C(G, O)$ (the O-Ceva conjugate of the line at infinity) and the image of the Jerabek hyperbola (which is the polar conic of H in K 003) under the homothety with center H, ratio $1 / 2$.

It follows that, if Q is one of these three points, $J(Q)$ splits into the line $H Q$ (which is parallel to one of the asymptotes of K003) and the circle whose diameter is $P_{1} P_{2}$ where P_{1}, P_{2} are the intersections of $H Q$ and K001. See figure 11.

Consequently, there are six Euler lines passing through each of these three points Q. See figure 12.

4.2.4 $Q \neq H$ cannot be a triple point on Q093

Indeed, the line $H Q$ would meet Q093 at seven points and this cannot occur since Q093 is a sextic.

4.3 The special case $Q=H$

Recall that, when $Q=H$, the Jacobian $J(H)$ of the three rectangular hyperbolas $\left(C_{a}\right),\left(C_{b}\right),\left(C_{c}\right)$ identically vanishes hence these belong to a same pencil and therefore have four common points P_{i}, $i \in\{1,2,3,4\}$ forming an orthocentric system. It follows that, for any given point which is not one of the P_{i}, there is one and only one rectangular hyperbola of the pencil passing through this point.

One of the most remarkable of these hyperbolas is H_{30} passing through the infinite point X_{30} of the Euler line and having a common asymptote with K001, namely the line $X_{30} X_{74}$. See figure 13 .

Figure 11: Decomposed Jacobian

Figure 12: Six Euler lines through Q
H_{30} is actually obtained from the polar conic of X_{30} in K001 under the translation with vector $\overrightarrow{O H}$. This polar conic is a diagonal rectangular hyperbola \mathcal{H} passing through the in/excenters and also $X_{5}, X_{30}, X_{395}, X_{396}, X_{523}, X_{1749}$.

Now, since \mathcal{H} bisects any segment $P P^{*}$ of isogonal conjugate points on K001, we have $\overrightarrow{P_{i} P_{i}^{*}}=$ $-2 \overrightarrow{O H}=\overrightarrow{H X_{20}}$. This gives

Figure 13: The pencil of rectangular hyperbolas $\left(C_{a}\right),\left(C_{b}\right),\left(C_{c}\right)$ when $Q=H$

Theorem 3 There are four points P on K 001 such that the twelve Euler lines of triangles $P P_{b} P_{c}$, $\xrightarrow[P P_{c} P_{a}]{ }, P P_{a} P_{b}$ concur at H. Furthermore, these points are the only points P in the plane such that $\overrightarrow{P P^{*}}=-2 \overrightarrow{O H}=\overrightarrow{H X_{20}}$.

The figure 14 shows one of these points P with its pedal triangle $P_{a} P_{b} P_{c}$ and the three corresponding Euler lines through H. The isogonal conjugates of P_{i} are labelled Q_{i} and the four parallel chords $P_{i} Q_{i}$ with length 2 OH are also represented. This will be generalized in the next paragraph. See figure 14.

Remark : the midpoint of any pair of points $P_{i} Q_{j}, i \neq j$, lies on the circumcircle and the midpoint of any pair of points $P_{i} Q_{i}$ lies on \mathcal{H}.

5 Isometric parallel chords on the Neuberg cubic

Let k be a real number. We wish to characterize the points P such that

$$
\begin{equation*}
\overrightarrow{P P^{*}}=k \overrightarrow{O H}=\overrightarrow{O Q}, \tag{1}
\end{equation*}
$$

where P^{*} is the isogonal conjugate of P. This will generalize Theorem 3 above.
One trivial case is obtained when $k=0$ since P must be one in/excenter of triangle $A B C$, these four points obviously lying on K001 and on the diagonal rectangular hyperbola \mathcal{H} above.

If $k \neq 0, P\left(\right.$ and $\left.P^{*}\right)$ must lie on K001 since the line $P P^{*}$ is parallel to the Euler line.

5.1 The general case

The condition (1) on P shows that P must be a common point of three rectangular hyperbolas $\left(H_{a}\right),\left(H_{b}\right),\left(H_{c}\right)$ belonging to a same pencil \mathcal{F}_{k} that also contains the image \mathcal{H}_{k} of \mathcal{H} under the translation with vector $\vec{T}=-1 / 2 \overrightarrow{O Q}=-k \overrightarrow{O N}$, where $N=X_{5}$ is the nine point center of $A B C$. See figure 15 .

Figure 14: Euler lines when $Q=H$

Properties of $\left(H_{a}\right)$

1. It contains A and the tangent passes through X_{74}.
2. It has two asymptotes parallel to the bisectors at A in the triangle $A B C$.
3. It contains A^{\prime} defined by $\overrightarrow{A A^{\prime}}=\overrightarrow{Q O}$.
4. Its center O_{a} is the midpoint of $A A^{\prime}$ hence on the A-cevian line of X_{30}.
5. It meets the lines $A O, A H$ again at A_{O}, A_{H} which are on the parallel at O_{a} to the A-cevian line of X_{5}.
6. It belongs to the pencil of rectangular hyperbolas generated by the bisectors at A and the union of the line at infinity with $A X_{74}$.

5.2 Properties of \mathcal{F}_{k}

Let k be a given real number.

1. The rectangular hyperbolas of \mathcal{F}_{k} have their centers on the circle \mathcal{C}_{k} with radius R (that of the circumcircle (O) of $A B C)$ and center Ω_{k} such that $\overrightarrow{O \Omega_{k}}=-k / 2 \overrightarrow{O H}=-1 / 2 \overrightarrow{O Q}$.
2. If $P_{i}, i \in\{1,2,3,4\}$, are the four basis points of \mathcal{F}_{k} then the midpoints of $P_{i} P_{j}$ lie on \mathcal{C}_{k} and the midpoints of $P_{i}^{*} P_{j}^{*}$ lie on the image of \mathcal{C}_{k} under the translation with vector $\overrightarrow{O Q}$.
3. The points P_{i}^{*} are therefore the basis points of the pencil \mathcal{F}_{-k}.
4. The lines $P_{i} P_{j}^{*}$ and $P_{i}^{*} P_{j}$ meet on (O).

Figure 16 shows \mathcal{F}_{k} when $k=-5 / 2$ in which the P_{i}^{*} are labelled Q_{i}. In this case, one can find four isometric parallel chords to K001 which is obviously not always true.

Figure 15: The rectangular hyperbolas $\left(H_{a}\right),\left(H_{b}\right),\left(H_{c}\right)$ with \mathcal{H}_{k} and \mathcal{H}

Figure 16: K001 with four isometric parallel chords

5.3 Special cases

1. Recall that the basis points of \mathcal{F}_{0} are the in/excenters of $A B C$.
2. The pencil \mathcal{F}_{-2} is the one we met in section 4.3.
3. The basis points of \mathcal{F}_{1} are O and three other points U_{a}, U_{b}, U_{c} which are connected with pivotal equilateral isocubics.

Indeed, there is in general one and only one pivotal equilateral cubic with given pivot but there are infinitely many such cubics when the pivot is one of the points U_{a}, U_{b}, U_{c}. See [4], §6.5.

5.4 Number of isometric parallel chords

Recall that the in/excenters are the only finite points where the tangents are parallel to the Euler line (and to the real asymptote). Since K001 is formed by an oval and an infinite inflexional branch, there must be two in/excenters on the oval and two in/excenters on the infinite branch which can contain two chords of any possible length.

Hence, the number of isometric parallel chords depends of the number of such chords on the oval which can be 0,1 or 2 and therefore 2,3 or 4 on the cubic.

It is in particular possible to have only three such chords (one only on the oval) when $\left(H_{a}\right),\left(H_{b}\right)$, $\left(H_{c}\right)$ are tangent at one of the points P_{i}. See figure 17.

Figure 17: K001 with only three isometric parallel chords

The computation of the length of this longest chord on the oval is difficult and requires the resolution of an equation of degree four. See [2] for further developments and related cubics.

References

[1] Gibert B., Catalogue of Triangle Cubics, available at http://pagesperso-orange.fr/bernard.gibert/
[2] Gibert B., Isometric Parallel Chords on the Neuberg Cubic, available at http://pagesperso-orange.fr/bernard.gibert/
[3] Gibert B., Pseudo-Pivotal Cubics and Poristic Triangles, available at http://pagesperso-orange.fr/bernard.gibert/
[4] Gibert B., Special Isocubics in the Triangle Plane, available at http://pagesperso-orange.fr/bernard.gibert/
[5] Kimberling C., Triangle Centers and Central Triangles, Congressus Numerantium 129, Winnipeg, Canada, 1998.
[6] Kimberling C., Encyclopedia of Triangle Centers, http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
[7] Parry C., Problem 10637, American Mathematical Monthly 105 (1998) 68.

