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Special Isocubics in the Triangle Plane

This paper is organized into five main parts :

• a reminder of poles and polars with respect to a cubic.

• a study on central, oblique, axial isocubics i.e. invariant under a central, oblique,
axial (orthogonal) symmetry followed by a generalization with harmonic homolo-
gies.

• a study on circular isocubics i.e. cubics passing through the circular points at
infinity.

• a study on equilateral isocubics i.e. cubics denoted K60 with three real distinct
asymptotes making 60◦ angles with one another.

• a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate
points envelopes a conic.

A number of practical constructions is provided and many examples of “unusual”
cubics appear.

Most of these cubics (and many other) can be seen on the web-site :

http://bernard.gibert.pagesperso-orange.fr

where they are detailed and referenced under a catalogue number of the form Knnn.

We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for
their friendly support and help.



Chapter 1

Preliminaries and definitions

1.1 Notations

• We will denote by K the cubic curve with barycentric equation

F (x, y, z) = 0

where F is a third degree homogeneous polynomial in x, y, z. Its partial derivatives

will be noted F ′
x for

∂F

∂x
and F ′′

xy for
∂2F

∂x∂y
when no confusion is possible.

• Any cubic with three real distinct asymptotes making 60◦ angles with one another
will be called an equilateral cubic or a K60. If, moreover, the three asymptotes are
concurrent, it will be called a K+

60. At last, a K+
60 with asymptotes concurring on

the curve is denoted by K++
60 .

• The line at infinity is denoted by L∞ with equation x+y+z = 0. It is the trilinear
polar of the centroid G. More generally, the trilinear polar of point P is denoted
by IP(P ).

• Several usual transformations are very frequent in this paper. We will use the
following notations :

– gP = isogonal conjugate of P .

– tP = isotomic conjugate of P .

– cP = complement of P .

– aP = anticomplement of P .

– iP = inverse of P in the circumcircle.

They easily combine between themselves and/or with other notations as in :

– tgP = isotomic conjugate of isogonal conjugate of P .

– gigP = isogonal conjugate of inverse (in the circumcircle) of isogonal conju-
gate of P = antigonal of P .

– aX13, IP(tP ), etc.

The homothety with center P and ratio k is denoted by hP,k.

2
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• We will use J.H.Conway’s notations :

SA =
1

2
(b2 + c2 − a2), SB =

1

2
(c2 + a2 − b2), SC =

1

2
(a2 + b2 − c2).

• The barycentric coordinates (f(a, b, c) : f(b, c, a) : f(c, a, b)) of a triangle center are
shortened under the form [f(a, b, c)].

• Usual triangle centers in triangle ABC 1 :

– I = incenter = X1 = [a] .

– G = centroid = X2 = [1].

– O = circumcenter = X3 = [a2SA].

– H = orthocenter = X4 = [1/SA].

– K = Lemoine point = X6 = [a2].

– L = de Longchamps point = X20 = [(b2 − c2)2 + 2a2(b2 + c2)− 3a4].

– X30 = [(b2 − c2)2 + a2(b2 + c2)− 2a4] = point at infinity of the Euler line.

– tK = third Brocard point = X76 = [1/a2].

• P/Q : cevian quotient or Ceva-conjugate

Let P and Q be two points not lying on a sideline of triangle ABC. The cevian
triangle of P and the anticevian triangle of Q are perspective at the point denoted
by P/Q called cevian quotient of P and Q or P−Ceva-conjugate of Q in [38], p.57.
Clearly, P/(P/Q) = Q.

P ⋆ Q : cevian product or Ceva-point

The cevian product (or Ceva-point in [39]) of P and Q is the point X such that
P = X/Q or Q = X/P . It is denoted by P ⋆Q. It is equivalently the trilinear pole
of the polar of P (resp. Q) in the circum-conic with perspector Q (resp. P ).

If P = (u1 : v1 : w1) and Q = (u2 : v2 : w2), then

P/Q = u2

(
−u2
u1

+
v2
v1

+
w2

w1

)
: : and P ⋆ Q =

1

v1w2 + v2w1

: : .

1.2 Isoconjugation

1.2.1 Definitions

• Isoconjugation is a purely projective notion entirely defined with the knowledge of
a pencil of conics such that triangle ABC is self-polar with respect to any conic of
the pencil.

For any point M – distinct of A,B,C – the polar lines of M with respect to all the
conics of the pencil are concurrent at M∗ (which is the pole of M in the pencil of
conics).

We call isoconjugation the mapping ϕ : M 7→ M∗ and we say that M∗ is the
isoconjugate of M .

1We make use of Clark Kimberling’s notations. See [38, 39].
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ϕ is an involutive quadratic mapping with singular points A,B,C and fixed points
the common points – real or not – of the members of the pencil. Since all the conics
of this pencil have an equation of the form αx2 + βy2 + γz2 = 0, they are said to
be diagonal conics.

• If we know two distinct isoconjugate points P and P ∗ = ϕ(P ) – provided that they
do not lie on ABC sidelines – we are able to construct the isoconjugate M∗ of any
point M .

The (ruler alone) method is the following : 2

– let T be any point on the line PP ∗ (distinct of P and P ∗) and ATBTCT the
cevian triangle of T .

– A1 = PA ∩ P ∗AT , B1 = PB ∩ P ∗BT , C1 = PC ∩ P ∗CT .

– A′ = MA1 ∩BC,B′ = MB1 ∩CA,C ′ = MC1 ∩AB.

– A′′ = B1C
′ ∩ C1B

′, B′′ = C1A
′ ∩A1C

′, C ′′ = A1B
′ ∩B1A

′.

– M∗ is the perspector of triangles ABC and A′′B′′C ′′.

Another more simple but less symmetric method is :

– E0 = AM ∩ CP ∗,

– E1 = MP ∩BC,

– Q = AP ∩E0E1,

– E2 = E0Q ∩AB,

– M∗ = CQ ∩ P ∗E2.

The knowledge of these two distinct isoconjugate points P and P ∗ is sufficient to
obtain two members of the pencil of diagonal conics as defined in the paragraph
above :

– one is the conic γ(P ) through P and the vertices of the anticevian triangle of
P which is tangent at P to the line PP ∗. This conic also contains P ∗/P and the
vertices of its anticevian triangle.

– the other is the conic γ(P ∗) through P ∗ and the vertices of the anticevian triangle
of P ∗ which is tangent at P ∗ to the line PP ∗. It also passes through Q = P/P ∗

and the vertices of the anticevian triangle of Q.

• We now define the pole of the isoconjugation as the isoconjugate Ω = G∗ of the
centroid G. In other words, Ω is the intersection of the two polar lines of G in the
two conics γ(P ) and γ(P ∗).

This shows that there is no need of coordinates to define an isoconjugation. Nev-
ertheless, since a lot of computation is needed for this paper, we will make use of
barycentric coordinates and, if Ω = (p : q : r), the isoconjugation with pole Ω is
the mapping :

ϕΩ : M(x : y : z) 7→ M∗

(
p

x
:
q

y
:
r

z

)
∼ (pyz : qzx : rxy)

2See [13] for details.
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Remark :

Ω is the perspector of the circum-conic isoconjugate of L∞ . Thus, this conic is the
locus of centers of all the diagonal conics of the pencil and, in particular, contains
the centers of γ(P ) and γ(P ∗). It also passes through the six midpoints of the
quadrilateral formed by the four fixed points of the isoconjugation. (See another
construction below)

• When Ω = K , we have the usual isogonal conjugation and when Ω = G , we have
the isotomic conjugation.

• When Ω is inside the triangle ABC i.e. p, q, r are all positive, the Ω-isoconjugation
has four real fixed points : one is inside ABC and the three others are its harmonic
associates, 3 but when Ω is outside the triangle ABC, the four fixed points are
imaginary. The four fixed points are said to be the square roots of Ω and are
denoted Ro, Ra, Rb, Rc where Ro is the one which is inside ABC when Ω is itself
inside the triangle.

1.2.2 Useful constructions

More information and other constructions can be found in [60] and [13].

• Barycentric product of two points 4

The barycentric product X × Y of two distinct points X and Y is the pole of the
isoconjugation which swaps them and therefore the line XY and the circum-conic
through X and Y . 5

With X = (u1 : v1 : w1) and Y = (u2 : v2 : w2), we have X × Y = (u1u2 : v1v2 :
w1w2) hence its name.

If X and Y are distinct points, X × Y is the intersection of the polars of G in
the two conics γ(X) and γ(Y ) defined as above : γ(X) passes through X and the
vertices of the anticevian triangle of X and is tangent at X to the line XY . Note
that γ(X) also contains the cevian quotient Y/X.

3The three harmonic associates of the point M(α : β : γ) are (−α : β : γ), (α : −β : γ), (α : β : −γ).
They are the vertices of the anticevian triangle of M .

4See [61] for details and proofs.
5The pole of the line XY in this conic is called crosspoint of X and Y in [39].

If X = (u1 : v1 : w1) and Y = (u2 : v2 : w2), then this point has coordinates :

(
1

v1w2

+
1

v2w1

: :

)
.

This has to be compared with the intersection of the trilinear polars of X and Y which is :
(

1

v1w2

−
1

v2w1

: :

)
,

with the cevian product :

X ⋆ Y =

(
1

v1w2 + v2w1

: :

)
,

and with the trilinear pole of the line XY which is :
(

1

v1w2 − v2w1

: :

)
,

this latter point being the “fourth” intersection of the circum-conics with perspectors X and Y .
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Another construction of X × Y (for distinct points) is the following :

Let X and Y be two points. Xa,Xb,Xc and Ya, Yb, Yc are the vertices of the cevian
triangles of X and Y resp. Xc

a on AB and Xb
a on AC are two points such that

AXc
aXaX

b
a is a parallelogram. Define Y c

a on AB and Y b
a on AC then intersect the

lines Xb
aY

c
a and Xc

aY
b
a at Za. Define Zb and Zc similarly. The lines AZa, BZb, CZc

concur at the requested point.

If U denotes the foot (on BC) of the radical axis of circles with diameters BC and
XaYa, and if V , W are defined likewise on CA, AB respectively then U, V,W are
collinear on a line whose trilinear pole is X × Y . Practically, the circumcircle and
the circle AXaYa meet again at A′ and U is the intersection of BC and AA′.

• Barycentric square of a point

The construction above is also valid when X = Y since the circle AXaYa is now
tangent at Xa = Ya to BC. This gives the barycentric square of point X denoted
by X2.
This point X2 is also :
– the intersection of the lines G,tcX and X,ctX,
– the intersection of the polars of G in the pairs of lines passing through the
vertices of the quadrilateral formed by X and its harmonic associates (vertices of
the anticevian triangle of X),
– the trilinear pole of the line passing through the midpoints of a vertex of the
cevian triangle of X and the foot of IP(X) on the same sideline of ABC.

Remark :

This construction can be used to construct the pole Ω of an isoconjugation since it
is the barycentric product of two isoconjugate points P and P ∗.

• Ω-isoconjugate of a point X

The construction seen in §1.2.1 can be used but we can also define it as the barycen-
tric product of the two points Ω and tX.

• Ω-isoconjugate of a line ℓ

Let X be the tripole of ℓ, X∗ its Ω-isoconjugate, EX = G/X∗.

The Ω-isoconjugate of the line ℓ is the circumconic centered at EX .

This conic is inscribed in the anticevian triangle of X∗, the contacts being A,B,C.

Remark :

The construction of the Ω-isoconjugate of L∞ is simpler : its center E is G/Ω,
perspector of the medial triangle and the anticevian triangle of Ω. 6

• Square roots of Ω

We take Ω inside ABC to get real points.

Let Ωa,Ωb,Ωc and Ma,Mb,Mc be the vertices of the cevian triangles of Ω and G
resp.

6The coordinates of E are [p(q + r − p)].
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The inversion swapping B and C, Ωa and Ma has two fixed points on BC called
F ′
a and F ′′

a
7. Define F ′

b and F ′′
b , F

′
c and F ′′

c similarly. These six points are three
by three collinear on four lines whose tripoles are the four roots Ro, Ra, Rb, Rc we
were looking for.

When the isoconjugation is defined by two distinct isoconjugate points P and Q,
another construction of the square roots of the pole Ω = P ×Q may be construed
as the intersection of the two conics γP and γQ where

– γP is the conic tangent at P to the line PQ passing through P and the vertices
of the anticevian triangle of P ,

– γQ is the conic tangent at Q to the line PQ passing through Q and the vertices
of the anticevian triangle of Q.

Remarks :

1. The six lines passing through one vertex of ABC and the two fixed points on
the opposite side intersect three by three at the same points Ro, Ra, Rb, Rc.

The union of two lines through a vertex of ABC is in fact one of the degenerate
conic of the pencil of conics seen in §1.2.1.

2. F ′
a and F ′′

a can easily be obtained in the following manner : draw the perpen-
dicular at Ωa to BC intersecting the circle with diameter BC at two points,
one denoted by Ω′

a. The bisectors of 6 BΩ′
aC intersect BC at F ′

a and F ′′
a .

1.3 Isocubics

By an isocubic we mean a circum-cubic which is invariant under an isoconjugation. It
is a known fact (see [5] for instance) that an isocubic K is invariant under an Ω(p : q : r)-
isoconjugation if and only if it has a barycentric equation of one of the two types :

(pK) : ux (ry2 − qz2) + vy (pz2 − rx2) + wz (qx2 − py2) = 0 (1.1)

(nK) : ux (ry2 + qz2) + vy (pz2 + rx2) + wz (qx2 + py2) + k xyz = 0 (1.2)

where u, v, w, k are real numbers whose signification is detailed in the following para-
graphs.

Combining the notations above will lead to denote by pK60 a pivotal isocubic with
three real distinct asymptotes making 60◦ angles with one another, by nK+

60 a non-
pivotal isocubic with three real distinct concurring asymptotes making 60◦ angles with
one another, and so on...

1.4 Pivotal isocubics or pK
1.4.1 Definitions

A pivotal isocubic of the form (pK) is the locus of M for which the points M , M∗

and P = (u : v : w) are collinear. For this reason, P is called the pivot of the isocubic.
We shall simply refer to a pivotal isocubic as a pK.

7F ′

a and F ′′

a are the Poncelet points of the pencil of circles generated by the two circles with diameters
BC and ΩaMa : each circle of the pencil is orthogonal to the circle with diameter F ′

aF
′′

a .
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Remarks :

1. pK passes through A, B, C, P , P ∗, the traces AP , BP , CP of P , the square roots
Ro, Ra, Rb, Rc of Ω.

2. This pK is equivalently the locus of point M such that :

• the polar lines of M and M∗ in the circum-conic centered at P are parallel.

• P ∗, M and P/M are collinear. For this reason, P ∗ is called isopivot or
secondary pivot of the cubic. Note that P ∗ is the tangential of P .

3. This pK is also the locus of the contacts M , N of tangents drawn through P ∗ to the
circum-conics passing through P . The line MN passes through P/P ∗ and P/P ∗,
M∗, (P/M)∗ are collinear. Naturally, P/P ∗, M and (P/M∗)∗ are also collinear.
Note that P/P ∗ is the tangential of P ∗.

1.4.2 pK and trilinear polars

• The locus of point M such that the trilinear polars of M and its Ω-isoconjugate
M∗ are parallel is a pK with pivot Ω i.e. in this case pivot = pole. Its equation is :

∑

cyclic

px (ry2 − qz2) = 0.

A pK with pivot = pole always contains the centroid (which is the isoconjugate
of the pivot) and is always tangent at A,B,C to the medians. When Ω = G, the
cubic degenerates into the union of the three medians.

• More generally, given a line L, the locus of point M such that the trilinear polars
of M and its Ω-isoconjugate M∗ concur on L is the pK with pole Ω and pivot the
isoconjugate of the trilinear pole of the line L.
Conversely, any pK with pivot P can be seen as the locus of point M such that
the trilinear polars of M , M∗ and P ∗ are concurrent and, equivalently, the locus
of point M such that the trilinear pole of the line MM∗ lies on the trilinear polar
of P ∗.

• For example, the trilinear polars of any two isogonal conjugates on the Thomson
and McCay cubics concur on the Lemoine axis and orthic axis respectively.

1.4.3 Construction of a pK
Let P be the pivot and P ∗ its isoconjugate. 8 Let M be a variable point on the

line PP ∗. Draw N = M/P perspector of the cevian triangle AMBMCM of M and the
anticevian triangle APBPCP of P . The circum-conic through M and P ∗ intersects the
line PN at two points U and U∗ which are isoconjugate points on the cubic and harmonic
conjugates with respect to P and N .
The tangents to the cubic at these two points meet at N∗, which is also the second
intersection of the same circum-conic (which passes through M , P ∗, U , U∗) and the line
MN .

8These two points define the isoconjugation.
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Remarks and other constructions :

1. The locus of the perspector N is the conic through P and its harmonic associates 9

AP , BP , CP , and also the (not necessarily real) square roots Ro, Ra, Rb, Rc of the
pole Ω. This conic is tangent at P to the line PP ∗ which allows its construction.
This is the polar conic CP of P , see §2 and specially §2.4 below.

2. The isoconjugate M∗ of M is the second intersection of PN with the circum-conic
CP ∗ through P and P ∗, which is the polar conic of P ∗.

3. The points P/U and P/U∗ lie on the isocubic. The line joining these points passes
through a fixed point Q of the curve with coordinates :

(
u

− p
u2 + q

v2 + r
w2

:
v

p
u2 − q

v2 + r
w2

:
w

p
u2 + q

v2 − r
w2

)
.

Q is the Ω−isoconjugate of P/P ∗ or the P ∗-cross conjugate of P .
Conversely, for given Ω and P , the locus of U such that Q, P/U and P/U∗ are
collinear is the union of the pK and a nK with the same pole, with root Q (see §1.5
below).

4. Tangentials of U and U∗

The tangential of P is the point P ∗. Denote by Ũ and Ũ∗ the tangentials of U and
U∗. Since U , U∗, P are collinear on the cubic, so are their tangentials Ũ , Ũ∗ and
P ∗. These tangentials can be constructed as

Ũ = U N∗ ∩ P/U∗ (P/U)∗ and Ũ∗ = U∗N∗ ∩ P/U (P/U∗)∗.

The isoconjugates (Ũ)∗ and (Ũ∗)∗ of these two tangentials are :

(Ũ)∗ = Ũ P ∩ U∗ P/U and (Ũ∗)∗ = Ũ∗ P ∩ U P/U∗

and the points P/P ∗, (Ũ)∗ and (Ũ∗)∗ are collinear on the cubic.

5. Remember that APBPCP is the cevian triangle of P . The third point A3 of the
cubic on AU lies on the line through AP and P/U∗. Similarly we obtain B3, C3

on the lines BU , CU respectively.

In the same manner, the third point on AU∗ is the isoconjugate A∗
3 of A3 on the

line through AP and P/U , B∗
3 and C∗

3 likewise.

Note that the four points U , A∗
3, B

∗
3 and C∗

3 share the same tangential Ũ . We say

that these four points are the pretangentials of Ũ . Similarly U∗, A3, B3, C3 are
the pretangentials of Ũ∗.

6. Polar conic of U

It is now possible to draw the polar conic CU of U since it contains U and four
other points harmonic conjugates of U with respect to A and A3, B and B3, C and
C3, P and U∗.

The polar conic CU∗ of U∗ is obtained likewise with the point U∗ and its harmonic
conjugates with respect to A and A∗

3, B and B∗
3 , C and C∗

3 , P and U .
These two polar conics intersect at four points lying on the diagonal conic CP .
These four points are the poles of the line UU∗ in the cubic (see §2.3.1).

9Remember that the harmonic associates of a point are the vertices of its anticevian triangle.
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7. Pretangentials of U

The (not always real) pretangentials U1, U2, U3, U4 of U lie on CU : they are the
contacts of the tangents drawn through U to the cubic other than the tangent at
U itself.

The two lines through B, AU∗ ∩CB∗
3 and C, AU∗ ∩BC∗

3 meet at a point which is
the perspector of a conic inscribed in the triangle BCA3. The two tangents to this
conic passing through A∗

3 contain U1, U2, U3, U4. Similarly we can draw two other
pairs of tangents passing through B∗

3 and C∗
3 . These six tangents form a complete

quadrilateral with vertices U1, U2, U3, U4 and diagonal triangle A∗
3B

∗
3C

∗
3 .

It follows that the cubic is a pivotal cubic with respect to A∗
3B

∗
3C

∗
3 , with pivot U ,

isopivot Ũ . Moreover, A∗
3B

∗
3C

∗
3 is self-polar with respect to the polar conic of U .

8. Osculating circle at U

Since we know the polar conic CU of U , we are able to draw the osculating circle
ΓU at U to the cubic. Indeed, the curvature at U to the cubic is twice that at U
to CU (theorem of Moutard). Hence, if ρU is the center of the osculating circle at
U to CU then the center of ΓU is RU , midpoint of U, ρU .

10

1.4.4 Construction of the asymptotes of a pK
This construction is generally not possible with ruler and compass only : it needs to

intersect conics and we must use Cabri-géomètre or equivalent.

First draw the polar conic of the pivot P (see remark 1 above) whose center is ω and
the homothetic of this conic through hP,1/2 intersecting the Ω-isoconjugate of L∞ (see
§1.2.2 final remark) at ω and three other points – one at least being real – denoted by
Ei (i = 1, 2, 3).
These three points lie on the cubic and are the isoconjugates of its points at infinity.
Then draw the reflections Fi of P about Ei (the points Fi lie on the polar conic CP of
P ) and their isoconjugates F ∗

i .
The asymptotes are the parallels at F ∗

i to the lines PEi.

1.5 Nonpivotal isocubics or nK
1.5.1 Definitions and known properties

• An isocubic of the form (nK)

ux (ry2 + qz2) + vy (pz2 + rx2) + wz (qx2 + py2) + k xyz = 0 (1.3)

is said to be nonpivotal. We shall call P (u : v : w) the root and the real number
k the parameter of the isocubic nK. If the parameter is zero, we shall write nK0.
Note that the root P is not necessarily on the cubic.

10Construction of ρU . Denote by:
– T the second intersection of the normal at U to CU with CU ,
– F the Fregier point of U with respect to CU ,
– M the midpoint of UT ,
then ρU is the harmonic conjugate of M with respect to U and F (after Roger Cuppens).
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• The equation (1.3) rewrites as

(x
u
+

y

v
+

z

w

)(
p

ux
+

q

vy
+

r

wz

)
=

p

u2
+

q

v2
+

r

w2
− k

uvw
(1.4)

in which we recognize the equations of IP(P ) and the circumconic which is its
isoconjugate IP(P)∗ i.e.

x

u
+

y

v
+

z

w
= 0

and
p

ux
+

q

vy
+

r

wz
= 0

respectively.

• When the root P (u : v : w) is given, the equation (1.3) above defines a pencil of
isocubics with pole (p : q : r), all passing through A, B, C, the feet U , V , W of
IP(P ), and all having tangents at A, B, C passing through the feet U ′, V ′, W ′ of
IP(P ∗) where P ∗ = Ω-isoconjugate of P . 11

From this we see that the root of a nK is in fact the trilinear pole of the line
through the “third” intersections of the curve with the sidelines of ABC.

Finally, note that the points U , V , W , U ′, V ′, W ′ and the tangents at A, B, C are
independent of k.

• In the definition given above, the parameter k has no geometrical signification. It
is better to define a nK with its root P (u : v : w) and two isoconjugate points
Q(x0 : y0 : z0) and Q∗(x1 : y1 : z1)

12 on the curve. In this case, the equation
rewrites under the more symmetrical form :

∑

cyclic

u x (y0 z − z0 y)(y1 z − z1 y) = 0

This cubic becomes a nK0 if and only if P lies on the trilinear polar of the cevian
product of Q and Q∗. These cubics are called “apolar cubics” : any two vertices
of triangle ABC are conjugated with respect to the polar conic of the remaining
vertex.

• Two isoconjugate points M and M∗ on a nK share the same tangential denoted
by M̃ which is the isoconjugate of the third intersection of the line MM∗ with the
cubic.

In particular, A and U share the tangential Ã. B̃ and C̃ are defined likewise and
these three points are collinear since they are the tangentials of three collinear
points U, V,W . The line through Ã, B̃ and C̃ passes through the intersection of
IP(P ) and IP(P ∗).

• The tangents at A, B, C are the sidelines of the anticevian triangle of P ∗ and the
nK is tritangent at A, B, C to the circum-conic with perspector P ∗, the conic
which is the isoconjugate of IP(P ) .

11In other words, the tangents at A, B, C are the sidelines of the anticevian triangle of P ∗.
12These points define the isoconjugation.
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1.5.2 Characterization of nK0 isocubics

Theorem : Any nK0 with pole Ω, root P can be considered as the locus of
point M such that the points M and M∗ are conjugated with respect to the
circum-conic CP with perspector P .

In fact, more generally, CP and the diagonal conic DΩ which passes through the fixed
points of the isoconjugation, G and the vertices of the antimedial triangle generate a
pencil of conics 13. The nK0 can also be considered as the locus of point M such that the
points M and M∗ are conjugated with respect to any conic (except DΩ) of this pencil.
Note that all the conics of the pencil are rectangular hyperbolas if and only if Ω lies on the
line GK and P on the orthic axis. Otherwise, the pencil contains only one rectangular
hyperbola.
It contains a circle if and only if P lies on the parallel at K to IP(tΩ). In this case, all
the conics of the pencil have the same directions of axes.

We can add the following propositions :

• A nK with root P is an nK0 if and only if the tangents at the intercepts U , V , W
of IP(P ) concur. If this is the case, the point of concurrence is P ∗.

• When the cubic is defined with two isoconjugate points Q(x0 : y0 : z0) and Q∗(x1 :
y1 : z1) as seen above, the condition for which it is a nK0 is that its root P lies on
the trilinear polar of the the cevian product (see §1.2.2) Q ⋆ Q∗ of Q and Q∗.

• Any nK0 can be considered as the locus of point M such that the pole of the line
MM∗ in the conic ABCMM∗ (which is its isoconjugate) lies on the trilinear polar
of the isoconjugate of its root. This can be compared to end of §1.4.2. See several
examples in §4.3.3 and §7.2.1.

1.5.3 Characterization of nK isocubics

Theorem : Any nK can be considered as the locus of point M such that the
points M and M∗ are conjugated with respect to at least one fixed circle.

If the cubic is defined by its root P and two isoconjugate points Q and Q∗, the circle
is centered on the radical axis of the circles with diameters AU , BV , CW . Two different
situations then can occur depending of the positions of Q and Q∗.

When the circle with diameter QQ∗ does not belong to the pencil generated by the
three previous circles, the required fixed circle has its center at the radical center of the
circles with diameters AU , BV , CW , QQ∗ and is orthogonal to these circles.

In other words, the Jacobian of the circle with diameter QQ∗ and any two of the
three circles above degenerates into the line at infinity and the fixed circle.

Conversely, if the circle is given, U is the intersection of the sideline BC and the
polar line of A in this circle. V and W being defined similarly, the root P of the nK
is the trilinear pole of the line passing through the three collinear points U , V , W . In

13With Ω = p : q : r, this diagonal conic DΩ has equation

∑

cyclic

(q − r)x2 = 0.

It has the same infinite points as the circumconic whose perspector is the infinite point of IP(tΩ). Both
conics are tangent at G to the line GΩ.
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order to obtain a nK passing through the given point Q, we must take its isoconjugate
Q∗ on the polar line of Q in the circle.

Now, if the pole Ω of the isoconjugation and the center of the circle are given, all the
corresponding nK (when the radius varies) form a pencil of cubics which contains one
nK0 and the degenerated cubic formed by L∞ and the circum-conic with perspector Ω.
This yields that all these cubics have the same points at infinity and the same common
points with the circum-conic above.

One of the most interesting examples is obtained when the pole is K and when
the circles are centered at O. The pencil is formed by equilateral isogonal cubics with
asymptotes parallel to the sidelines of the Morley triangle and meeting the circumcircle
at the vertices of the circumtangential triangle. These asymptotes form an equilateral
triangle with center G. The root of any such cubic lies on the line GK. This pencil
contains K024 (a nK0), K085 (a nodal cubic), K098, K105 and the cubic that
decomposes into the circumcircle and L∞ .

When the circle with diameter QQ∗ belongs to the pencil generated by the three
circles, the radical center above is not defined. In this case, the pole must lie on the
orthic axis and one can find a pencil of fixed circles. This pencil is formed by all the
circles orthogonal to those with diameters AU , BV , CW .

Any such cubic contains the infinite point of the Newton line passing through the
midpoints of AU , BV , CW and the two common points of the circles with diameters
AU , BV , CW . The cubic has two other perpendicular asymptotes intersecting on the
radical axis of the latter circles.

When P and Q are given and when the pole Ω traverses the orthic axis, the cor-
responding cubics form a pencil and the two perpendicular asymptotes envelope the
inscribed parabola with directrix the radical axis of the four circles, with perspector and
focus the isotomic and isogonal conjugates of the infinite point of this radical axis.

A remarkable special case occurs when the root is the Lemoine point K since all
the cubics are nK0. In such case, the pencil of fixed circles is that generated by the
circumcircle, the nine point circle, the orthoptic circle of the Steiner inscribed ellipse,
the polar circle, the orthocentroidal circle, etc, with radical axis the orthic axis. All these
cubics belong to a same pencil and pass through A, B, C, the centers Ωa, Ωb, Ωc of the
Apollonius circles, X523 and two points P1, P2 on the Euler line which are inverses with
respect to any circle of the pencil. P1, P2 are actually the antiorthocorrespondents of K.

One of the most interesting cubic is that with pole the barycentric product of X468

and X523 since it is the central cubic K608. See figure 1.1.

1.5.4 Construction of a nK
Let P be the root and P ∗ its isoconjugate (these two points defining the isoconjuga-

tion).
Remember that IP(P ) and IP(P ∗) meet the sidelines of ABC at U , V , W (these three

points on the cubic) and U ′, V ′, W ′ respectively.
We need an extra point Q on the cubic i.e. distinct from A, B, C, U , V , W . When the

cubic is a nK0, it is convenient to take Ã = AU ′ ∩P ∗U (or equivalently B̃ = BV ′ ∩P ∗V
or C̃ = CW ′ ∩ P ∗W ).

The cevians of Q meet the line UVW at Qa, Qb, Qc. For any point m on UVW , let
us denote by m′ its homologue under the involution which swaps U and Qa, V and Qb,
W and Qc. The line Qm′ meets the conic ABCQ∗m∗ (isoconjugate of the line Qm) at
two points M , N on the nK. Similarly, the line Qm meets the conic ABCQ∗m′∗ at the
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Figure 1.1: The central cubic K608

isoconjugates M∗, N∗ of M , N and we have the following collinearities on the cubic :

Q,M,N ; Q,M∗, N∗; Q∗,M,N∗; Q∗,M∗, N.

In particular, we find the following points on the cubic :

A1 = QA ∩Q∗U ; B1 = QB ∩Q∗V ; C1 = QC ∩Q∗W

and their isoconjugates :

A∗
1 = QU ∩Q∗A; B∗

1 = QV ∩Q∗B; C∗
1 = QW ∩Q∗C.

Let Z = MM∗ ∩ NN∗. When m traverses the line UVW , the locus of Z is a line
LZ passing through the points AU ∩ A1A

∗
1, BV ∩ B1B

∗
1 , CW ∩ C1C

∗
1 and meeting the

cubic at three points Z1 (always real, on the line QQ∗) and two isoconjugate points Q1,
Q2 which therefore lie on the conic isoconjugate of LZ . Note that Z

∗
1 is the tangential of

Q and Q∗ in the cubic and that the conic through Q, Q∗, Q1, Q2, Z
∗
1 is the polar conic

of Z∗
1 in the cubic.

The involution above has two fixed points F1, F2 on the line UVW which are not
necessarily real. If they are, it is possible to draw the four tangents passing through
Q∗ to the cubic. The four contacts are the intersections of the lines QF1, QF2 with
the conics ABCQ∗F ∗

1 , ABCQ∗F ∗
2 respectively. Obviously, the diagonal triangle of the

quadrilateral formed by these four points is the triangle QQ1Q2. This shows that the
nK is in fact a pK with respect to this triangle and its pivot is Q∗. It is invariant in the
isoconjugation (with respect to QQ1Q2) whose fixed points are the four contacts. This
isoconjugation also swaps the points M , N∗ and N , M∗. Z∗

1 is naturally the secondary
pivot of the pK. Hence, it is possible to draw the nK with the construction seen in §1.4.3.

This construction can be generalized for any non-singular cubic as far as we are able
to draw the four contacts of the tangents passing through any point on the cubic which
is rarely possible in the most general case.

In more specific situations, other simpler constructions will be seen.
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1.5.5 Isogonal nK
Theorem : Any isogonal nK is, in a single way, the locus of point M whose

pedal circle14 is orthogonal to a fixed circle Γ whose center is denoted ω.
ω is the midpoint of H and the center of the circle defined in §1.5.3.

Remarks :

1. Γ can be real or imaginary and even reduced to a single point.

2. This isogonal nK is a nK60 if and only if ω = X5 (see Chapter 7).

3. This circle Γ can degenerate into the union of L∞ and another line L : in this case,
we obtain an isogonal circular focal nK, locus of M whose pedal circle is centered
on L (see Chapter 4). This nK becomes a nK0 when L passes through K.

4. Let ℓH be a line through H meeting the Kiepert hyperbola again at H2 and let
ℓG be the line through G and H2. For any ω on ℓH , the isogonal nK as seen in
theorem above has its root P on the line ℓG.
More precisely, for a given center ω, the root P lies on the line through G and the
orthocorrespondent ω⊥ of ω. The nK0 is obtained when P = ω⊥.
For example :

• when P lies on the Euler line, ω lies on the tangent at H to the Kiepert
hyperbola.

• when P lies on the line GK, ω lies on the Euler line.

5. Any isogonal nK meets the circumcircle at A,B,C and three other points (one at
least is real) whose Simson lines pass through the point ω.

1.5.6 Construction of an isogonal nK knowing the circle Γ

Γ is a circle centered at ω.

• The circle through A, the foot of the altitude Ha and the inversive image iA of
A with respect to Γ is orthogonal to Γ and meets the line BC at Ha and another
point U . Its center is denoted by ωA. Similarly, the points V on CA and W on
AB are defined and the three points are on a line whose trilinear pole is the root
P of the nK.

As the radius of Γ varies, the point P traverses a line through G and the second
meet of the line Hω with the Kiepert hyperbola.

• In order to make use of the construction seen in §1.5.4, we need an extra point on
the cubic and we seek such a point Q on the line AU .

Let EA be the intersection of the altitude AH with the Simson line of the second
intersection of AU ′ and the circumcircle. The midpoint of QgQ lies on the perpen-
dicular ℓA to ωEA at ωA. The hyperbola through ωA, the midpoint of AU ′, the
midpoint of ωAgωA and whose asymptotes are parallel to the lines AU and AU ′

meets ℓA again at the midpoint q of QgQ. Now the circle centered at q orthogonal
to Γ is the pedal circle of Q and gQ. In order to get gQ, reflect the line AU about
q intersecting AU ′ at gQ and finally reflect gQ about q to get Q.

14Remember that two isogonal conjugates share the same pedal circle.
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1.5.7 nK0 and nets of conics

Let Ω = p : q : r and P = u : v : w be the pole and the root of a nK0.
Remember that :

– Ro, Ra, Rb, Rc are the square roots of Ω (see §1.2.2) i.e. the fixed points of the
isoconjugation,
– U , V , W are the traces of IP(P ),
– U ′, V ′, W ′ are the traces of IP(P ∗).

Theorem : assuming that pu2+qv2+rw2 6= 0, any nK0(Ω, P ) is the jacobian15

of a net N of conics containing the circum-conic CP with perspector P .

This net is generated by the three independent16 conics γA, γB , γC with respective
equations :

γA : 2u(uyz + vzx+ wxy)− vw(ry2 − qz2) = 0,

γB : 2v(uyz + vzx+ wxy)− wu(pz2 − rx2) = 0,

γC : 2w(uyz + vzx+ wxy)− uv(qx2 − py2) = 0,

where uyz + vzx+ wxy = 0 is the equation of CP .
Thus, for any point M on the cubic, the polar lines of M in γA, γB , γC concur at

M∗ on the cubic.

γA passes through A and is tangent at this point to the corresponding sideline of
the anticevian triangle of P (and therefore it is tangent at A to CP ). It meets CP again
at two points lying on the two lines through A which contain the fixed points of the
isoconjugation. These two points are in fact the intersections of CP and the polar line of
U ′ in CP . γA meets the lines AB, AC again at two points on the line δA with equation
2ux− rvy + qwz = 0. This line contains the A−vertex of the cevian triangle of P ∗.

This net N contains :
– only one circum-conic which is CP ,
– only one (possibly degenerate) circle,
– a pencil of diagonal conics passing through Ro, Ra, Rb, Rc,
– a pencil of rectangular hyperbolas.

1.5.8 nK and nets of conics

Let nK(Ω, P,Q) be the cubic with pole Ω = p : q : r and root P = u : v : w passing
through a given point Q = α : β : γ not lying on a sideline of ABC.

There is a net of conics such that this cubic is the locus of point M such that M and
its Ω−isoconjugate M∗ are conjugated with respect to any conic of the net.

If we suppose that this cubic is not a nK0, the net is generated by the three indepen-
dent conics :

γA : −2pαβγ(uyz + vzx+ wxy) + Tx2 = 0,

γB : −2qαβγ(uyz + vzx+ wxy) + Ty2 = 0,

γC : −2rαβγ(uyz + vzx+ wxy) + Tz2 = 0,

where T =
∑

cyclic

pβγ(wβ + vγ).

15The jacobian of a net of conics is the locus of points whose polar lines in the conics are concurrent
(on the jacobian).

16When pu2 + qv2 + rw2 = 0, these three conics are not independent i.e. any of them belongs to the
pencil generated by the two others.
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Note that T = 0 if and only if Q lies on nK0(Ω, P ) which is here excluded.
Any conic of this net may be written under the form

T (λx2 + µy2 + νz2)− 2αβγ(λp + µq + νr)(uyz + vzx+wxy) = 0,

where λ, µ, ν are any three (not all zero) real numbers.
In this case, the cubic nK(Ω, P,Q) is the jacobian of the net i.e. the jacobian of the

conics γA, γB, γC .



Chapter 2

Poles and polars in a cubic

We will denote by K the cubic curve with equation F (x, y, z) = F (M) = 0 where F
is a third degree homogeneous polynomial in x, y, z and where M = (x, y, z).

Its partial derivatives will be noted F ′
x for ∂F

∂x and F
′′

xy for ∂2F
∂x∂y when no confusion is

possible.
If P is a point in the triangle plane, F ′

x(P ) is F ′
x evaluated at P then,

GF (P ) =




F ′
x(P )

F ′
y(P )

F ′
z(P )


 and HF (P ) =




F
′′

x2(P ) F
′′

xy(P ) F
′′

xz(P )

F
′′

yx(P ) F
′′

y2(P ) F
′′

yz(P )

F
′′

zx(P ) F
′′

zy(P ) F
′′

z2(P )




are the gradient and the hessian matrices of F evaluated at P .
H̃F (P ) is the comatrix (matrix of cofactors) of F evaluated at P .
At last, P̂ is P transposed and PQ is the signed distance from P to Q .

2.1 Polar line of a point in a cubic

2.1.1 Definition

Let P be a point. A variable line through P meets K at three points M1,M2,M3.
The point Q on this line is defined by

3

PQ
=

1

PM1

+
1

PM2

+
1

PM3

(2.1)

which is equivalent to
QM1

PM1

+
QM2

PM2

+
QM3

PM3

= 0 (2.2)

and the locus of Q is a straight line 1 called the polar line of the point P in the cubic :
it will be denoted LP .

Its equation is :
M GF (P ) = 0 ⇐⇒ P HF (M) P̂ = 0. 2 (2.3)

1This theorem was first given by Cotes in Harmonia Mensurarum. See [54] §132.
2The equation (2.3) can also be written under the equivalent forms :

M HF (P ) P̂ = 0 ⇐⇒ P HF (P ) M̂ = 0.

18
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2.1.2 Diameter in a cubic

When P is the point at infinity of a given line L, equality (2.2) becomes

QM1 +QM2 +QM3 = 0 (2.4)

and Q is the isobarycentre of the points M1,M2,M3.
In this case, the polar line of P is called the associated diameter of L in K.

2.2 Polar conic of a point in a cubic

2.2.1 Definition

Let us now “reverse” the configuration and define the point Q on the same line
through P , M1, M2, M3 by :

PM1

QM1

+
PM2

QM2

+
PM3

QM3

= 0 ⇐⇒ 3

QP
=

1

QM1

+
1

QM2

+
1

QM3

(2.5)

The locus of Q is a conic called the polar conic of the point P in the cubic.
Its equation is :

P GF (M) = 0 ⇐⇒ P HF (M) M̂ = 0. 3 (2.6)

It will be denoted by CP . The matrix of this conic is HF (P ). CP passes through the
six (real or not) contacts of tangents drawn through P to K. See figure 2.1.

polar conic

A

B C

P

Figure 2.1: Polar conic with six real contacts

3The equation (2.6) can also be written under the equivalent forms :

M HF (P ) M̂ = 0 ⇐⇒ M HF (M) P̂ = 0.

Notice that M HF (M) M̂ = 0 gives the cubic K itself.
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2.2.2 Essential properties

• From equations (2.1) and (2.5), it is clear that Q lies on CP if and only if P lies on
LQ.

• The polar line of P in CP is LP . See figure 2.2.

L
P

K

C
P

P

Figure 2.2: Polar line and polar conic

• When P is on the cubic, for instance P = M3, equality (2.5) becomes :

PM1

QM1

+
PM2

QM2

= 0 (2.7)

which is equivalent to (P,Q,M1,M2) = −1. Hence, CP is the locus of Q, harmonic
conjugate of P with respect to M1 and M2. In this case, LP is the common tangent
at P to CP and K.

• The equation (2.6) clearly shows that all the polar conics of the points of the plane
form a net of conics generated by any three of them. It is convenient to take those
of A, B, C namely F ′

x(M) = 0, F ′
y(M) = 0 and F ′

z(M) = 0 when some computation
is involved.

2.2.3 Diametral conic of a line in a cubic

When P is the point at infinity of a given line L, equality (2.5) becomes

1

QM1

+
1

QM2

+
1

QM3

= 0 (2.8)

The locus of Q is a conic called diametral conic of L in K.

2.2.4 Special polar conics

Let CP be the polar conic of P in the cubic K.
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Circles

In general, there is one and only one point noted P̊ whose polar conic is a circle.
Indeed, since the polar conic of P̊ contains the circular points at infinity J1 and J2,
the polar lines of these two latter points are two imaginary conjugate lines of the form
L1 = D1 + iD2, L2 = D1 − iD2 where D1 and D2 are usually two real lines. When D1

and D2 are defined (i.e. are proper lines) and distinct, L1 and L2 intersect at a real point
which is the required point P̊ .

In the case of a circular cubic, P̊ is the singular focus of the cubic. See chapter 4.
If the cubic has three real asymptotes, P̊ is the Lemoine point of the triangle formed

by the asymptotes and, obviously, when they concur, it is the point of concurrence.
Furthermore, the parallels to these asymptotes passing through P̊ meet the cubic again
at six points lying on a same circle. This circle is analogous to the (first) Lemoine circle
obtained when the cubic is the union of the sidelines of triangle ABC.

Figure 2.3 shows the cubicK414 (the Orthocubic of the excentral triangle) for which
P̊ = X9. The polar conic of X9 is the circle with center X649 passing through X15, X16,
X1276, X1277. X9 is the Lemoine point of the triangle formed by the asymptotes.

A

B C

K414

polar conic

of X9

X9

X649

X1277

X15

X16

Figure 2.3: Circular polar conic

Now, if one can find three non collinear points whose polar conics are circles, the
polar conics of all the points in the plane are circles and the cubic must decompose into
the line at infinity and a circle. This happens when D1 and D2 both identically vanish.

When the polar conics of two distinct points are circles, all the points on the line
L through these two points have also a circular polar conic. This line will be called
the circular line of the cubic. Hence, the pencil of polar conics of the points of a line
always contains a circle and the polar conics of all the points in the plane have the same
directions of axes.
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This occurs when
– (1) either one and only one of the lines D1, D2 identically vanishes,
– (2) or the lines D1, D2 coincide.
In both cases, the lines L1 and L2 are real and coincide hence the cubic must have

three concurring asymptotes but one only is real and the two other asymptotes are
imaginary conjugates. The point of concurrence X lies on L. The polar conic of X
degenerates into the line at infinity and the radical axis of the pencil of the circular polar
conics. See [58] for details and proofs.

In figure 2.4 is represented the cubic nK0(X468,X468) where the polar conics of all
the points on the line GK are circles centered on the line GX98 and the polar conics of
all the points not on GX98 have all the same directions of axes which are those of the
asymptotes of the rectangular hyperbola with center X1560, the orthojoin of X468.

A

B C

G

line GK

Figure 2.4: A cubic with a pencil of circular polar conics

More specific characterizations concerning pK and nK cubics are given in §2.4.1 and
§2.4.2.

Rectangular hyperbolas

In general, the locus of P such as CP is a rectangular hyperbola is a line sometimes
called the orthic line of the cubic. This line is the polar line of P̊ in the poloconic of the
line at infinity (see §2.3.4).

When the cubic has three real asymptotes, this poloconic is the Steiner inscribed
ellipse in the triangle formed by these asymptotes and the orthic line of the cubic is the
orthic axis of the triangle. Indeed, the polar line of the Lemoine point of a triangle in
the Steiner inscribed ellipse of this same triangle is the orthic axis i.e. the trilinear polar
of the orthocenter of the triangle.

But if one can find three non collinear points whose polar conics are rectangular
hyperbolas then the polar conics of all the points in the plane are rectangular hyperbolas
and the cubic is said to be an equilateral cubic denoted by K60 (see chapters 5, 6, 7).
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Parabolas

CP is a parabola if and only if P lies on the poloconic of the line at infinity (see
§2.3.4).

2.2.5 Mixed polar line of two points in a cubic

Let P and Q be two points and CP and CQ their polar conics in the cubic K. The
polar lines of P in CQ and Q in CP coincide. This common polar line is called the mixed
polar line of P and Q in K and is noted LP,Q.

The equation of LP,Q is :

M GFP
(Q) = 0 ⇐⇒ M GFQ

(P ) = 0 (2.9)

where FP = 0 and FQ = 0 are the equations of the polar lines of P in CQ and Q in CP
respectively.

This equation can also be written under the forms :

P HF (M) Q̂ = 0 ⇐⇒ QHF (M) P̂ = 0 (2.10)

2.2.6 Hessian of a cubic

The locus of point P such that CP degenerates into two secant lines at Q is called the
Hessian H of the cubic and then Q is also a point of the Hessian. P and Q are said to be
two corresponding points (Salmon) or conjugated points (Durège) on the Hessian
since the polar conic of Q also degenerates into two secant lines at P .
H is also the Jacobian of all the conics of the net we met above that is to say the locus
of point P such that the polar lines of P with respect to any three of the conics of the
net concur at Q. See figure 2.5 in which the three conics are C1, C2, C3 and the polar
lines of P are L1, L2, L3.

The equation of the Hessian of K is :

det(HF (M)) = 0 (2.11)

The tangents at P and Q to H meet at R, common tangential of P and Q. R lies
on the Hessian and, obviously, the polar conic CR of R in K degenerates into two lines
secant at S (one of them is PQ, the other P ′Q′ and P ′, Q′ are also corresponding points
on the Hessian) and then S is called complementary point of P and Q (and also P ′

and Q′). See figure 2.6.
We notice that the polar line of P in K is the tangent at Q to H and vice versa.

Furthermore, the lines QP and QR are harmonic conjugates with respect to the two
lines forming the polar conic of P . At last, R and S are also corresponding points on
the Hessian.

It is a known fact (see [7, 54] for example) that H and K meet at the nine common
inflexion points of the two cubics. Three are real and six are imaginary. The polar conic
of each inflexion point I degenerates into two lines, one of them being the inflexional
tangent at I and the other the harmonic polar line of I in the cubic.

2.2.7 Prehessians of a cubic

Any non-singular cubic K can be seen as the Hessian of three cubics Ωi, i = 1, 2, 3
(see [7, 54]). We shall say that Ωi are the prehessians of K although these prehessians
might not be all real.
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Figure 2.5: Hessian of a cubic
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Figure 2.6: Corresponding and complementary points

Naturally, K, its Hessian and its three prehessians belong to the same pencil of
cubics since they pass through their nine common inflexion points. This pencil is called
the syzygetic pencil of cubics associated with K. See figure 2.7.

All that have been said in the paragraph above can be “reversed” and adapted to
these three prehessians and we see that each point P on K has three corresponding points
Q = Q1, Q2 and Q3 according to the relative prehessians. We indeed can draw from R
four tangents to K, two of them being the lines RQ and RP , the remaining two RQ2
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Figure 2.7: Prehessians of a cubic with three real collinear common inflexion points

and RQ3 where Q2 and Q3 are the two points on CR and K different of P , Q, S. See
figure 2.8.

KΩ1
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CP

CP
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Q1

Figure 2.8: Corresponding points in the three prehessians of a cubic

In other words, Q1, Q2 and Q3 are the “centers” of the three (degenerate) polar
conics of P with respect to the three prehessians Ω1, Ω2, Ω3 respectively. These three
degenerate polar conics consist in six lines forming the complete quadrilateral PQ1Q2Q3

whose diagonal triangle is formed by the three complementary points S = S1, S2 and
S3. P , Q1, Q2 and Q3 are called the pretangentials of R. See figure 2.9.
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Figure 2.9: Complementary points and diagonal triangle

2.3 Poles and poloconic of a line in a cubic

2.3.1 Poles of a line in a cubic

Let L be a line. Each point M on L has a polar conic CM in K. The conics CM form
a pencil and therefore have four (not necessarily real) points Ωo, Ωa, Ωb, Ωb in common
which are called the poles of the line L in K.

These poles form a complete quadrilateral whose diagonal triangle T = TaTbTc is
self-polar in the pencil of conics. When the poles are all real, Ωo is the one inside this
diagonal triangle and the three other form a triangle which is the anticevian triangle
of Ωo with respect to T . See figure 2.10. See [54] p.51 §61 and p.142 §165 for more
informations.

2.3.2 Poloconic of a line in a cubic

• Let L be a line. Any point M on L has a polar line LM in K. The poloconic 4 of
L in K is the envelope of LM when M traverses L. It will be denoted CL. See [54]
p. 184 & sq. for details and proofs.

If L has equation ux + vy + wz = 0 where L = (u, v, w) are the line coordinates,
then an equation of CL is :

L H̃F (M) L̂ = 0 (2.12)

• The poloconic of L is also :

– the locus of the poles of L with respect to the polar conics of the points of L.
– the locus of the points whose polar conic is tangent to L.

4This is called polar conic of a line in [54] and “poloconique” in [5]



J.-P. Ehrmann and B. Gibert 27

2.3.3 Some propositions

Proposition 1

If Ωo, Ωa, Ωb, Ωb are the poles of the line L in a cubic K, the poloconic CL passes
through :

• the three vertices Ta, Tb, Tc of the diagonal triangle of the complete quadrilateral
ΩoΩaΩbΩb.

• the six harmonic conjugates of the intersections of L with a sideline of ΩoΩaΩbΩb

with respect to the two vertices of ΩoΩaΩbΩb on the sideline.

• the two fixed points of the involution on L generated by the pencil F of conics
through Ωo, Ωa, Ωb, Ωb. (these two points can be real or imaginary)

The poloconic of L is therefore the 11-point conic of F . See figure 2.10.

L

Ωo

Ta

Ωa

Ωb

Ωc

Tb

Tc

C
L

Figure 2.10: Poles and poloconic of a line in a cubic

Proposition 2

If L intersects K in three points X, Y , Z, the tangents tX , tY , tZ to K at these points
are the tangents to the polar conics CX , CY , CZ at X, Y , Z. They form a triangle noted
X ′Y ′Z ′. Hence, the poloconic CL is inscribed in X ′Y ′Z ′ and its perspector is the pole
W of L in CL. See figure 2.11.

Proposition 3

When the tangents tX , tY , tZ concur at a point W , the poloconic CL is degenerated
into two straight lines through W . These lines are imaginary when X, Y , Z are real.
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Figure 2.11: Proposition 2

Proposition 4

When L is tangent at X to K and meets K again at X̃ (which is called the tangential
of X), the poloconic of L is tangent to L at X and moreover tangent to the tangent to
K at X̃. See figure 2.12.
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Figure 2.12: Proposition 4
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Proposition 5

The poloconic CL of a line L is tritangent to the hessian H of the cubic K. If L meets
H at X, Y , Z then the points of tangency are the centers X ′, Y ′, Z ′ of the (degenerate)
polar conics of X, Y , Z with respect to K. These points X ′, Y ′, Z ′ lie on H and are said
to be the conjugate points of X, Y , Z with respect to H.

X ′Y ′Z ′ is the diagonal triangle of the complete quadrilateral triangle formed by the
four poles of L with respect to K. See figure 2.13.
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Figure 2.13: Proposition 5

2.3.4 Poloconic of L∞

The general properties given above show that CL∞ , the poloconic of L∞ , is :

• the envelope of the diameters of the cubic i.e. the envelope of the polar lines of the
points on L∞ .

• the locus of the centers of the diametral conics of the cubic i.e. the polar conics of
the points on L∞ .

• the locus of the points whose polar conic is a parabola.

CL∞ contains the six midpoints of the quadrilateral formed by the poles Ωo, Ωa, Ωb, Ωb

of L∞ and the vertices of the diagonal triangle. The center of CL∞ is the isobarycenter of
these four poles i.e. the common midpoint of the three segments joining the six midpoints
above. See figure 2.14.

When the cubic has three real asymptotes, CL∞ is the inscribed Steiner ellipse of the
triangle formed with the three asymptotes (Take L = L∞ in proposition 2 above).

CL∞ is degenerate if and only if the cubic is a K+ i.e. a cubic with concurring
asymptotes.
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Figure 2.14: Poloconic of L∞

When CL∞ is a circle, this Steiner ellipse must be the incircle of the triangle formed
with the three asymptotes hence the three asymptotes make 60◦ angles with one another
and the cubic is a K60. See chapters 5, 6 ,7.

2.3.5 Mixed poloconic of two lines in a cubic

Let L1 and L2 be two lines with line coordinates L1 and L2. The locus of the poles
of L1 with respect to the polar conics of the points of L2 and the locus of the poles of L2

with respect to the polar conics of the points of L1 coincide. This locus is a conic called
mixed poloconic of the two lines in the cubic. Obviously, when L1 = L2, we find the
“ordinary” poloconic of the line in the cubic. The equation is :

L1 H̃F (M) L̂2 = 0 ⇐⇒ L2 H̃F (M) L̂1 = 0 (2.13)

2.4 Application to pK isocubics

Let us consider the pivotal isocubic pK with pole Ω = (p, q, r) and pivot P = (u, v, w)
i.e. the locus of point M such that M , its isoconjugate M∗ and P are collinear.

2.4.1 Polar conics

Diagonal and circumscribed polar conics

If P is not one of the fixed points of the isoconjugation 5 that is P 2 6= Ω , then :

• there is one and only one diagonal polar conic and it is that of the pivot P .

Its equation is : ∑

cyclic

(rv2 − qw2)x2 = 0

5when Ω = P 2 the cubic degenerates into the three cevians of P .
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It passes through P , the vertices of the anticevian triangle of P and the four fixed
points of the isoconjugation. It also contains the vertices of the anticevian triangle
of any of its points. It is tangent at P to the line PP ∗.

• there is one and only one circumscribed polar conic and it is that of the isoconjugate
P ∗ of the pivot.

Its equation is : ∑

cyclic

p u (rv2 − qw2) y z = 0

It passes through A, B, C, P and P ∗. The tangents at P and P ∗ pass through
P ∗/P and P/P ∗ respectively.

Rectangular hyperbolas

In general, the locus of point M whose polar conic is a rectangular hyperbola is the
line – sometimes called the orthic line of the cubic – with equation :

∑

cyclic

(
2SCrv − 2SBqw + b2ru− c2qu

)
x = 0

When the cubic has three real asymptotes, this line is the orthic axis of the triangle
formed by these asymptotes.

Consequently, there are exactly three points (at least one is real) on the curve whose
polar conic is a rectangular hyperbola.

But when the pivot P lies on the Neuberg cubic and the pole lies on a cubic we
will call Co or K095, every point in the plane has a polar conic which is a rectangular
hyperbola.

This will lead us to pK60 isocubics or equilateral pivotal isocubics and this will be
detailed in Chapter 6.

Circular polar conics

In general, there is one and only one point whose polar conic is a circle. When the
cubic is circular, it is the singular focus. When it has three concurring asymptotes, it is
the point of concurrence. When the cubic has three real asymptotes, this point is the
Lemoine point of the triangle formed by these asymptotes.

If there are two distinct points whose polar conics are circles then the polar conic of
any point on the line L passing through these two points must be a circle. Indeed, recall
that the polar conics of the points lying on a same line form a pencil of conics passing
through the poles of the line in the cubic. In this case, the pivotal cubic must have three
(not necessarily real) concurring asymptotes and the point of concurrence must lie on L.

This, in particular, occurs when the pole Ω of the cubic lies on the orthic axis and the
pivot P on the nine point circle, being the center of the rectangular circum-hyperbola
with perspector Ω. The asymptotes always concur at the centroid G of ABC.

The figure 2.15 shows K392 = pK(X523,X115) where X523 is the perspector of the
Kiepert hyperbola and X115 its center. The polar conic of any point on the line (L)
passing through G, X1637, X2799 is a circle.
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Figure 2.15: A pivotal cubic having a pencil of circular polar conics

2.4.2 Prehessians

Proposition : Every non degenerate pK has always three real prehessians.

Proof : since a prehessian Pi of K belongs to the pencil of cubics generated by the
cubic K itself and its Hessian H, we seek Pi under the form (1 − t)K + tH and write
that the Hessian of Pi must be K. This gives a third degree equation in t which always
factorizes into three first degree factors.

The figure 2.16 shows the McCay cubic K003, its Hessian K048 – a circular cubic
– and its three prehessians P1, P2, P3.

It follows that there are three conjugations Fi leaving the cubic pK invariant : Fi

maps any point M onto the center of the polar conic of M with respect to Pi.
Thus, for any point M on the cubic pK, one can find three points M1, M2, M3 also

lying on the cubic such that Mi = Fi(M). The triangle M1M2M3 is inscribed in the
polar conic of M∗ and autopolar in the polar conic of CM of M . Indeed, CM meets the
cubic at M (counted twice) and four other points forming a complete quadrilateral whose
diagonal triangle is M1M2M3.

Furthermore, the tangents at M , M1, M2, M3 concur at the tangential M ′ of M .
Obviously, the polar conic of M ′ contains M , M1, M2, M3, M

′.
Consequently, the cubic is a pivotal cubic with pivot M , isopivot M ′ with respect to

the triangle M1M2M3. This can be realized in infinitely many ways as far as M is not
a flex on the cubic. See figure 2.17 where the Neuberg cubic is represented with one of
these triangles M1M2M3.
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Figure 2.17: The Neuberg cubic with one triangle M1M2M3
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The Feuerbach theorem for pivotal cubics

This section is a consequence and an illustration of Malgouzou’s paper. See [44].
Let ∆i be the orthic line of the prehessian cubic Pi. This line is unique as far as Pi

is not a stelloid. See chapter 5.
The mixed polar conic of the line at infinity and ∆i is a circle we shall call the Euler

circle of Pi. See §2.6.2 below. If Ti is the diagonal triangle of the four poles of ∆i with
respect to Pi then the isoconjugation with respect to Ti whose fixed points are these four
poles maps the line at infinity to this Euler circle.

Recall that the poloconic of any line with respect to Pi is a conic tritangent to the
pivotal cubic pK. There are four lines (not necessarily real) for which this conic is a
circle therefore there are four circles tritangent to the pK and also tangent to the Euler
circle of Pi. It follows that there are three groups of four circles (analogous to the
in/excircles of ABC) tritangent to the pK and tangent to one of the three Euler circles
of the prehessians.

Figure 2.18 shows a configuration with the Lucas cubic K007 where the four tri-
tangent circles are all real although all the contacts with the cubic are not necessarily
real.

A

B C

K007

triangle TiTT

Euler circle of PiPP

Figure 2.18: The Feuerbach theorem for the Lucas cubic
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2.5 Application to nK0 isocubics

Let us consider a non-pivotal isocubic nK0 with pole Ω = (p, q, r) and root P =
(u, v, w). Recall that such a cubic always contains the feet U , V , W of the trilinear polar
of P on the sidelines of ABC.

2.5.1 Polar conics

Diagonal and circumscribed polar conics

In general, one cannot find a point whose polar conic in a nK0 is a circum-conic or a
diagonal conic.

This occurs when either the pole Ω or the root P lies on a sideline of ABC. In the
former case, the cubic decomposes into this sideline and a conic through the remaining
vertex of ABC. In the latter case, when P lies on BC for instance, the polar conic of A
is a circum-conic but decomposed into BC and a line through A and the polar conic of
U is diagonal.

Rectangular hyperbolas

The results obtained for pivotal isocubics are easily adapted. In general, the locus of
point M whose polar conic is a rectangular hyperbola is the (orthic) line with equation :

∑

cyclic

(
2SCrv + 2SBqw − b2ru− c2qu

)
x = 0

When the cubic has three real asymptotes, this line is the orthic axis of the triangle
formed by these asymptotes.

Consequently, there are exactly three points (at least one is real) on the curve whose
polar conic is a rectangular hyperbola.

But when the pole lies on the cubic K396 = nK(X6×X1989,X1989,X6) and the root
P lies on K397 = nK(X6,X30,X2), every point in the plane has a polar conic which is
a rectangular hyperbola.

This will lead us to nK60 isocubics or equilateral non-pivotal isocubics and this will
be detailed in Chapter 7.

Circular polar conics

Here again we obtain similar results to those for pivotal isocubics and, in general,
there is one and only one point whose polar conic is a circle.

However, there are several remarkable families of nK0 cubics having a pencil of cir-
cular polar conics.

• Every nK0(Ω,Ω) cubic with pole and root Ω on the orthic axis has a pencil of
circular polar conics.

This cubic has three (not all real) asymptotes concurring at G and the polar conic
of G decomposes into L∞ and the trilinear polar of Ω which is the radical axis of
the pencil of circles.

The orthic line also contains G and its infinite point is the Ω−isoconjugate of H.
One remarkable thing to observe is that the polar conic of this latter infinite point
is the orthoptic circle of the Steiner inscribed ellipse for every point Ω on the orthic
axis.
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When Ω = X1990 the orthic line is the Euler line and when Ω = X468 the orthic
line is the line GK.

The figure 2.19 presents nK0(X523,X523) where X523 is the infinite point of the
orthic axis. The orthic line contains X2, X525, X1640, X2394, X2433. The radical
axis is the trilinear polar of X523 passing through the centers of the Kiepert and
Jerabek hyperbolas namely X115 and X125 respectively.

A

B C

G

 radical

axis

X1640

Steiner orthoptic

circle

orthic
line

Figure 2.19: nK0(X523,X523), a non-pivotal cubic having a pencil of circular polar conics

• Every nK0(Ω, P ) cubic with root P = u : v : w 6= G on the Thomson cubic K002
and corresponding pole Ω = u(v +w − 2u) :: has a pencil of circular polar conics.

The asymptotes concur at the tripolar centroid TC(P ) of P 6 and the polar conic
of this point decomposes into L∞ and the radical axis of the pencil of circles.
Naturally, the orthic line also contains TC(P ).

The figure 2.20 shows K393 = nK0(X1990,X4). All the points on the orthic axis
of ABC have a circular polar conic. The radical axis is the parallel at X1990 to the
Euler line. X1990 lies on the line HK. It is the barycentric product of H and X30,
the infinite point of the Euler line.

The orthic axis meets the sidelines at U , V , W and X1637 is TC(H). The polar
conic of X1637 is the degenerate circle into the line at infinity and the radical axis.

The polar conic of X523, the infinite point of the orthic axis, is the circle with center
X1637 passing through the Fermat points and orthogonal to the circumcircle.

For any finite point P on the orthic axis, distinct of X1637, the polar conic is a
proper circle whose center is the inverse of P in the circle above.

6The tripolar centroid of a point P is the isobarycenter of the traces of its trilinear polar on the
sidelines of ABC.
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Figure 2.20: nK0(X1990,X4), a non-pivotal cubic having a pencil of circular polar conics

2.5.2 Prehessians

When we apply the same technique we used for pivotal cubics, we obtain again a
third degree equation in t which always factorizes into one first degree factor and one
second degree factor. This shows that a nK0 has always one real prehessian and two
other that can be real or not, distinct or not.

This depends of the sign of the discriminant

∆ = (q2r2u4 + r2p2v4 + p2q2w4)− 2pqr
(
pv2w2 + qw2u2 + ru2v2

)

which rewrites under the form

∆ = −p2q2r2
(

u√
p
+

v√
q
+

w√
r

)(
− u√

p
+

v√
q
+

w√
r

)

(
u√
p
− v√

q
+

w√
r

)(
u√
p
+

v√
q
− w√

r

)

showing that the sign of ∆ depends on the position of the root P with respect to the
different regions of the plane delimited by the trilinear polars of the square roots of the
pole Ω. Recall that these square roots are real if and only if Ω lies inside ABC.

When Ω is the Lemoine point, the isoconjugation is isogonality and the square roots
of K are the in/excenters of ABC. ∆ is positive in the regions containing the vertices of
ABC and negative in the regions containing the in/excenters of ABC. See figure 2.21.

We illustrate this with three isogonal focal nK0 with root on the orthic axis of ABC
namely :

• the second Brocard cubic K018 = nK0(X6,X523) which has always three distinct
prehessians but one only is real (∆ < 0). See figure 2.22.
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Figure 2.21: The sign of the discriminant ∆
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Figure 2.22: K018 = nK0(X6,X523)
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• the third Brocard cubic K019 = nK0(X6,X647) which has always three distinct
real prehessians (∆ > 0). See figure 2.23.
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Figure 2.23: K019 = nK0(X6,X647)

• the Pelletier strophoid K040 = nK0(X6,X650) which has always three real pre-
hessians but two of them coincide (∆ = 0). See figure 2.24.

2.6 Polars and tripolars

In this section, we consider that K is the degenerate cubic which is the union of the
sidelines of triangle ABC. All the definitions and results met in the previous sections
are easily adapted and this gives a connection with all sorts of notions which are deeply
related to the (projective) geometry of ABC.

2.6.1 With one extra point or line in the triangle plane

Let P be a point not lying on one sideline of ABC. With §2.1, we find the following
results :

• The polar line of P in K is the trilinear polar of P with respect to ABC.

• The polar conic of P in K is the circum-conic with perspector P and center G/P .

• Thus, the trilinear polar of P is the polar line of P in the circum-conic with
perspector P .

• Q lies on the circum-conic with perspector P if and only if P lies on the trilinear
polar of Q.
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Figure 2.24: K040 = nK0(X6,X650)

Let L be a line which is not one sideline of ABC. From §2.3.2, we obtain :

• The poloconic of L in K is the inscribed conic with perspector P , the tripole of L.
Its center is ctP.

• The polar line in K of any point on L is therefore tangent to this inscribed conic.

• The polar conic of any point on the inscribed conic with perspector P is tangent
to the trilinear polar of P .

2.6.2 With two extra points or lines in the triangle plane

Let P1 and P2 be two points not lying on one sideline of ABC.
Denote by L1, L2 their polar lines in K and by Γ1, Γ2 their polar conics in K. L is

the line P1P2 and Γ the circum-conic through P1, P2.
Recall that Γ1, Γ2 have in common A, B, C and a fourth point which is the trilinear

pole of the line L.
From §2.2.5, we see that the polar lines of P2 in Γ1 and P1 in Γ2 coincide. This line

is called the mixed trilinear polar of P1 and P2. It is the line passing through the two
poles of L in the conics Γ1, Γ2. The trilinear pole of this line is called cevian product or
Ceva-point of P1 and P2.

In particular, if the cubic is not a stelloid, the mixed trilinear polar of the circular
points at infinity is the orthic line of the cubic. This is the locus of points whose polar
conics are rectangular hyperbolas. See chapter 5 for further informations. In our case,
this orthic line is the orthic axis ofABC i.e. the locus of the perspectors of the rectangular
circum-hyperbolas.
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The mixed poloconic (see §2.3.5) of the lines L1, L2 is the conic which passes through
the six feet of the cevian lines of P1 and P2. This we call the bicevian conic of P1 and
P2 denoted by C(P1, P2).

Obviously, when L1 = L2, this conic is inscribed in ABC. In other words, any
inscribed conic can be seen as the poloconic of the trilinear polar of its perspector with
respect to K and any conic meeting the sidelines of ABC at six points forming two cevian
triangles can be seen as the mixed poloconic of the trilinear polars of the corresponding
perspectors.

For example, the Steiner in-ellipse is the poloconic of the line at infinity and the
nine-point circle is the mixed poloconic of the line at infinity and the orthic axis.

Furthermore, for a given point P , there is one and only one point Q such that
the mixed poloconic of the trilinear polars of P and Q is a circle : Q must be the
cyclocevian conjugate of P . The locus ofQ such that this mixed poloconic is a rectangular
hyperbola is a circum-conic whose perspector is the point SB q(p + r) + SC r(p + q) ::
when P = p : q : r. For example, with P = G, we have Q = K (Lemoine point), hence
any rectangular hyperbola passing through the midpoints of ABC passes through the
feet of the cevian lines of a point on the circumcircle (and through the circumcenter O).



Chapter 3

Central, oblique, axial isocubics
Harmonic homologies

This chapter is devoted to isocubics invariant under symmetries and more generally
under harmonic homologies.

3.1 Central pK isocubics

An isocubic K is said to be central if it is invariant under symmetry with respect to
a point N called its center. Such a center is necessarily an inflexion point on K. 1

3.1.1 An involutive transformation

Let Λ : M(p : q : r) 7→ N(p(q + r − p) : q(r + p − q) : r(p + q − r)) be the mapping
which associates to each point M the center N of the circum-conic with perspector M .
We have N = G/M and we see that Λ is involutive. N is called the G-Ceva conjugate
of M .

3.1.2 Theorem

There is a unique non-degenerate central pK invariant under a given Ω-
isoconjugation which is not isotomic conjugation.
Moreover :

1. Its center is N = Λ(Ω) and its pivot is P = hG,4(N).

2. The three asymptotes are the lines through N and the midpoints of the sides of
ABC.

3. The inflexional tangent at N is the line NΩ.

Remarks :

1. hG,4(N) is the reflection of N∗ in N . Equivalently, it is aN∗.

2. Λ being involutive, there exists one and only one non-degenerate central pK with
given center N 6= G and not at infinity.

1Central cubics are called “cubiques de Chasles” by F. Gomes Teixeira.

42
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3. N lies on L∞ if and only if Ω lies on the inscribed Steiner ellipse. In this case,
P = Ω and the cubic degenerates into three parallels through the vertices of triangle
ABC.

3.1.3 Cubic curves from P -perspectivity

Paul Yiu [61] has studied a family of cubics he obtained using Floor van Lamoen’s
notion of P -perspectivity [60]. We quote his essential ideas, replacing P by Q in order
to keep our own notations coherent.
Let Q be a point with homogeneous barycentric coordinates (u : v : w). For each point
X, the Q-traces of X are the intersections of the side lines of the reference triangle ABC
with the lines through X parallel to AQ, BQ, CQ respectively. If X has barycentric
coordinates (x : y : z), the Q-trace triangle is perspective with the reference triangle if
and only if ∑

cyclic

(v + w − u)x
[
w(u+ v)y2 − v(w + u)z2

]
= 0.

This defines a central pK denoted by pKc(Q) with :

• pole Ω(u(v+w) : v(w+u) : w(u+v)) = ctQ, the center of the iconic with prospector
Q,

• pivot P (v + w − u : w + u− v : u+ v − w) = aQ,

• center N(v + w : w + u : u+ v) = cQ.

Its asymptotes are the parallels to the cevian lines of Q through N and they pass through
the midpoints of the sides of ABC.

Proposition

Every non-degenerate central pK is a pKc(Q) for some Q.
Proof : Q = taΩ.

Remark :

The locus of the perspector of Q-trace and reference triangles is the isotomic pK with
pivot tQ.
Its equation is : ∑

cyclic

vwx(y2 − z2) = 0

For example, when Q = H, the central pK is the Darboux cubic K004 and the isotomic
pK above is the Lucas cubic K007.

Proposition

Conversely, it is easy to obtain a central pK from an isotomic pK.
Let M be a point on the isotomic pK with pivot tQ, with traces AM , BM and CM . The
lines through AM , BM , CM parallel to AQ, BQ, CQ respectively concur at a point Z.
As M traverses the isotomic pK, Z traverses a central pK.
The inflexional tangent at its center is parallel to QtQ. We can observe that two isotomic
conjugates M and tM on the isotomic pK lead to two points Z and Z ′ symmetric about
the center on the central pK.
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3.2 Some examples of central pK isocubics

3.2.1 The Darboux cubic K004 : the only isogonal central pK
When Ω = K, we find the well-known Darboux cubic with center O and pivot L. Its

asymptotes are the perpendicular bisectors of ABC. See [9] for details.

3.2.2 The isotomic central pK
When Ω = G, we find a degenerate cubic into the three medians of ABC.

3.2.3 The Fermat cubics K046a, K046b : the two central pK++
60

There are only two central pK which are pK++
60 . We call them the Fermat cubics and

they will be seen in §6.6.4 below.

3.2.4 Other remarkable central pK
The table below shows a small selection of central pK with pole Ω, pivot P and center

N are the pole of isoconjugation, the pivot, the center of symmetry respectively.

Notations :

• N = X5 = nine point center

• Ge = X7 = Gergonne point

• Na = X8 = Nagel point

• Mi = X9 = Mittenpunkt

• Sp = X10 = Spieker center

Q Ω P N P ∗ other centers cubic

I X37 Na Sp X65 X4,40,72, see note 2 K033

O X216 H N Xd X52,68,155, see note 1 K044

H K L O X64 X1,40,84 K004

K X39 tH X141 Xb X66,159,Xc K140

Ge I X144 Mi Xa X366 K202

Na Mi X145 I Xe X188 K201

Sp X1213 I X1125 Xi X596

X13 X396 X616 X618 K046a

X14 X395 X617 X619 K046b

X66 X32 aX66 X206 Xf K,X159 K161

X67 X187 aX67 Xh see note 3 K042

X69 O X193 K Xg

X74 X3003 X146 X113 X265,399,1986,2935 K255
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Unlisted centers in [38, 39] :

• Xa =
[
a/[(b − c)2 + a(2b+ 2c− 3a)]

]
= E2326

• Xb =
[
a2(b2 + c2)/SA

]
= E2334

• Xc =
[
a2(b2 + c2)(b4 + c4 − a4)

]
on the line OK

• Xd =
[
a2S2

A[(b
2 − c2)2 − a2(b2 + c2)]

]
= E593

• Xe = [a(b+ c− a)/(b+ c− 3a)] = E2327

• Xf =
[
a4/[(b4 − c4)2 + a4(2b4 + 2c4 − 3a4)]

]

• Xg =
[
a2SA/(b

2 + c2 − 3a2)
]
= E2329

• Xh =
[
a2(b2 + c2 − 2a2)(b4 + c4 − a4 − b2c2)

]
= E406 is the midpoint of X6,X110

on the Jerabek hyperbola

• Xi = (b+ c)(b + c+ 2a)/a

Notes :

1. K044 is called the Euler central cubic. See figure 3.1. It contains 9 familiar points :

• the feet of the altitudes since its pivot is H.

• the centers of circles HBC,HCA,HAB which are the reflections about X5 of
the feet of the altitudes.

• the reflections about X5 of A,B,C, these points on the perpendicular bisec-
tors.

A

B C

H

X5

X155

E593

O

X52

X68

Figure 3.1: K044 the Euler central cubic



J.-P. Ehrmann and B. Gibert 46

2. This cubic K033 is called the Spieker central cubic. It is obtained with Q = I
in §3.1.3 : for any point M on the curve, the parallels through M to AI,BI,CI
meet ABC sidelines at three points forming a triangle perspective with ABC.
Furthermore, the perspector lies on K034 the isotomic pK with pivot X75 = tI
called Spieker perspector cubic passing through X1,2,7,8,63,75,92,280,347, . . .

3. This cubicK042 is called the Droussent central cubic. It is obtained with Q = X67

in §3.1.3. This case is particularly interesting since the perspector as seen above
lies on the Droussent cubic. See figure 3.2.

A

B C
X67

Droussent

  cubic

Droussent

  cubic

E406

Figure 3.2: K042 the Droussent central cubic

3.3 Central nK isocubics

We seek central nK isocubics knowing either the pole Ω of the isoconjugation, the
center N or the root P of the cubic.
We denote by CΩ the circum-conic with perspector Ω i.e. the isoconjugate of L∞ .
Remember that CΩ is a parabola, an ellipse, a hyperbola if and only if Ω lies on, inside,
outside the inscribed Steiner ellipse respectively.

3.3.1 Theorem 1 : the pole Ω is given

For a given pole Ω,

• the locus of N is CΩ.

• one asymptote (always real) of the cubic is the line NN∗ (N∗ = Ω-isoconjugate of
N) whose trilinear pole is denoted by ZΩ.

• the remaining two asymptotic directions are those of CΩ.

• the root P is ctZΩ.
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Remarks :

1. The two other asymptotes of the cubic can be real or imaginary, distinct or not,
according to the position of Ω with respect to the Steiner inscribed ellipse.

More precisely, nK has :

• one real asymptote if and only if Ω is inside the Steiner inscribed ellipse i.e.
if and only if CΩ is an ellipse. See §3.4.3 for example.

• three real concurrent asymptotes if and only if Ω is outside the Steiner in-
scribed ellipse i.e. if and only if CΩ is a hyperbola. See examples 1 and 2 in
§3.4.1.

• three asymptotes, two of them being parallel, if and only if Ω lies on the
Steiner inscribed ellipse i.e. if and only if CΩ is a parabola. In this case, the
two parallel asymptotes are not always real and, therefore, we can find two
different types of non-degenerate cubics with :

– three real asymptotes, two of them being parallel, one real and two imag-
inary inflexion points, one node at infinity.

– one real and two imaginary asymptotes, three real inflexion points, one
node at infinity. See example 3 in §3.4.1.

2. nK can degenerate in several different ways : for instance the union of a hyperbola
and one of its asymptotes, or the union of a parabola and the line which is its
isoconjugate, or the union of three lines, two of them being parallel, etc.

3.3.2 Theorem 2 : the center N is given

For a given center N ,

• the locus of Ω is IP(N).

• the locus of the root P is IP(taN).

• IP(P ) intersects ABC sidelines at U, V,W (which are on the cubic) such that the
line UVW envelopes the inscribed conic centered at N . Moreover U, V,W are the
symmetrics (with respect toN) of the Ω-isoconjugates A′′, B′′, C ′′ of the symmetrics
A′, B′, C ′ of A,B,C.

3.3.3 Theorem 3 : the root P is given

• For a given root P = (u : v : w), IP(P ) intersects the sidelines of triangle ABC at
U, V,W .

– the locus of the center N is δP = IP(taP ).

– the center N being chosen on δP , let A′, B′, C ′, U ′, V ′,W ′ be the reflections
of A ,B, C, U , V , W about N . The pole Ω is the barycentric product of
A′ and U ′, B′ and V ′, C ′ and W ′. It lies on the trilinear polar of the point
[(v−w)/(v+w−u)] (isotomic conjugate of the point where IP(cP ) and IP(aP )
meet).

• It can be seen that all central nKs with a given root P = (u : v : w) form a pencil
of cubics passing through A, B, C, U , V , W , the point at infinity of δP , having a
common real asymptote.
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This pencil contains several particular cubics (any two of them generating the
pencil) :

– if the center is N = [u(v−w)(v+w−u)] 2 (intersection of δP and IP(tP )), the
cubic is the union of δP itself and the circum-conic which is its isoconjugate,
this conic being centered at N and passing through A′ ,B′, C ′. The pole is
Ω = [u(v − w)2(v + w − u)].

– if the center is at infinity, we obtain a cubic with a flex at infinity (Newton
trident type) and Ω = [(v −w)2] is a point on the inscribed Steiner ellipse.

– with Ω = [(v−w)(v+w−2u)/(v+w−u)] and N = [(v+w−2u)/(v+w−u)],
we find the only nK0 of the pencil.

For example, all the central nKs with root at X525 are centered on the Euler line
and have the Euler line as common real asymptote. Their poles Ω lie on the line
through X30, X1990, X3163, X3284. See Figure 3.3.

Those with root at X647 are centered on the Brocard line.

A

B C

G

Ω=X30

H

O

Ω=X1990

Ω=X3163

Ω=X3284

Figure 3.3: The Euler pencil of central nKs

3.3.4 Proof of theorems 1 and 2 :

Starting from the equation of nK seen in §1.5 and from the equation pyz+qzx+rxy =
0 of CΩ, we express that the polar lines of the points at infinity of ABC sidelines and
the cubic pass through the center N(xo : yo : zo).
We obtain the condition :

M




u
v
w
k


 = 0

2This point is the perspector of the circum-conic which passes through P and aP .
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where

M =




(q + r)xo p(yo − 2zo) p(zo − 2yo) −xo
q(xo − 2zo) (r + p)yo q(zo − 2xo) −yo
r(xo − 2yo) r(yo − 2xo) (p+ q)zo −zo
xo(ry

2
o + qz2o) yo(pz

2
o + rx2o) zo(qx

2
o + py2o) xoyozo




We find

detM = 2(xo + yo + zo)(pyozo + qzoxo + rxoyo)


∑

cyclic

x2o(yo + zo − xo)qr




which leads to examine three cases :
(1) : xo + yo + zo = 0 which gives nK = d∞ ∪ CΩ.
(2) : x2o(yo+zo−xo)qr+· · · = 0 which is the condition for which the line Ω-isoconjugate

of the circum-conic centered at N passes through N . In this situation, we get degenerate
cubics into a line through N and its Ω-isoconjugate conic which is centered at N . See
§3.3.3.

(3) : the non-degenerate cubics are therefore obtained when N ∈ CΩ.
Now, let us parametrize CΩ by :

xo =
p

β − γ
; yo =

q

γ − α
; zo =

r

α− β

where (β−γ : γ−α : α−β) is the point at infinity N∗ i.e. the line NN∗ is an asymptote
of nK.
From this, we get :

u = (α− β))(γ − α)(β + γ − 2α)p − (β − γ)2[(α − β)q − (γ − α)r],

v and w similarly, and :

k = 2
∑

cyclic

(β − γ)2(β + γ − 2α) qr

This shows that the two remaining asymptotic directions are those of CΩ.

Remark 1: this central cubic is a nK0 if and only if N∗ is one of the three infinite points
of the cubic pK(Ω,Ω). See §1.4.2.
Remark 2: if we denote by u : v : w the coordinates of N∗ (assuming u + v + w = 0)
the equation of the central nK rewrites under the form :

∑

cyclic

[
vw(v − w)p− u2(wq − vr)

]
x(ry2 + qz2) + 2


∑

cyclic

u2(v − w)qr


xyz = 0.

3.3.5 Construction of a central nK
First, choose Ω and N according to one of the three theorems above, then

1. draw the symmetrics A′, B′, C ′ of A,B,C with respect to N .

2. draw the Ω-isoconjugates A′′, B′′, C ′′ of A′, B′, C ′.
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3. draw the symmetrics U, V,W of A′′, B′′, C ′′ with respect to N (they are collinear
and on ABC sidelines). We can notice that the lines AA′′, BB′′, CC ′′, UA′, V B′,
CW ′, NN∗ are all parallel which yields the construction of the polar conic of N∗

centered at N passing through the midpoints of AA′′, BB′′, CC ′′, UA′, V B′, CW ′.

4. draw the trilinear pole P of UVW (it is the root of the cubic).

5. intersect the lines NA and UVW at Na then define Nb, Nc similarly.

6. Now, let J be the involution on UVW which swaps U and Na, V and Nb, W and
Nc.

• for any point m on UVW , construct its image m′ under J and draw the lines
ℓ = Nm and ℓ′ = Nm′ (this defines an involution on the pencil of lines through
N).

• let γ and γ′ be the conics which are the Ω-isoconjugates of ℓ and ℓ′ resp.

• intersect ℓ and γ′ at X and Y , ℓ′ and γ at X∗ and Y ∗. Those four points are on
the cubic, two by two symmetric about N , two by two Ω-isoconjugates.

7. At last, draw the line NN∗ which is one real asymptote of the cubic and, the
parallels at N to the asymptotes of CΩ when it is a hyperbola (this cannot be done
when CΩ is an ellipse) which are the remaining two asymptotes. Let us remark
that CΩ passes through N , its center being G/Ω.

When CΩ is a parabola, the two parallel asymptotes (whose union is the polar conic
of the point at infinity of the parabola axis) are less easy to draw, and remember
that they are not always real : one solution is to draw the tangents to the hyperbola
defined tangentialy with the six lines AU , BV , CW , A′A′′, B′B′′, C ′C ′′ which are
parallel to the axis of the parabola.

8. The inflexional tangent at N is easy to draw : it is the homologue of the line NN∗

under the involution on the pencil of lines through N as defined above. In a simpler
way, it is also the tangent at N to the circum-conic through N and N∗.

9. The two lines (real or not) through N and the fixed points of the involution J
meet the polar conic of N∗ at four points (real or not) where the tangents are
parallel to the real asymptote. The quadrilateral formed with those four points
is a parallelogram centered at N whose sidelines are two by two parallel to the
asymptotes other than the real one NN∗.

When the cubic is isogonal (see below), those four points are the centers of inversion
of the cubic and the two lines through N are perpendicular. The inversive images
of the inflexional tangent are the oscultator circles at the four points.

3.4 Some examples of central nK isocubics

3.4.1 Selected examples

Example 1 : K068

When N = G and Ω = X523 (point at infinity of orthic axis), we find a nK0 with
equation : ∑

cyclic

(b2 + c2 − 2a2)x [(a2 − b2)y2 + (c2 − a2)z2] = 0
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Its root is P = X524 and CΩ is the Kiepert hyperbola. One of its asymptotes is the
line GK and the others are the parallels at G to those of the Kiepert hyperbola. The
inflexional tangent at G passes through X99. See figure 3.4.

More generally, each central non-degenerate nK centered at G is a nK0 with pole and
root at infinity. It always has three real asymptotes.

A

B C

G
E

X99

Kiepert hyperbola

C'
B'

A'

X115

X671

V

U

W

trilinear polar

 of X(524)

Steiner ellipse

Figure 3.4: K068 a central nK with center G and pole X523

Example 2 : K069

When N = O and Ω = X647 = [a2(b2 − c2)SA] (isogonal conjugate of trilinear pole of
Euler line, a point on orthic axis), we find a central nK with root :

P =
[(
(b2 − c2)2 − a2(b2 + c2 − 2a2)

)
SA

]

and CΩ is the Jerabek hyperbola. One of its asymptotes is the perpendicular at O to
the Euler line and the others are the parallels at O to those of the Jerabek hyperbola.
See figure 3.5.

Example 3 : K036 Tixier central cubic

When N = X476 (Tixier point) and Ω = X115 (center of Kiepert hyperbola, lying on
the inscribed Steiner ellipse), we find a central nK with two asymptotes parallel to the
axis of the parabola CΩ with equation :

∑

cyclic

(b2 − c2)2 y z = 0

i.e. two asymptotes (not necessarily real) perpendicular to the Euler line. See figure 3.6.
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A

B C
H

O

Jerabek

  hyperbola

Figure 3.5: K069 a central nK with center O and pole X647

A

B C

CΩ

X476

Euler line

Figure 3.6: K036 Tixier central nK with center X476 and pole X115

3.4.2 Isogonal central nK cubics. K084

Theorem 1 above with Ω = K shows that all isogonal central nK are circular 3 with a
center N on the circumcircle 4, with a real asymptote perpendicular at N to the Simson
line of N . In this case, the singular focus is obviously the center.

3The asymptotes of the circumcircle are the isotrope lines of O which shows that the cubic must pass
through the circular points at infinity.

4The circum-conic with perspector K is the circumcircle.
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Remark :

The cubic can degenerate into a circle and a line through the center of the circle.
This happens when the center of the cubic is the “second” intersection of a bisector of
ABC with the circumcircle.

The figure 3.7 shows the Steiner central isogonal cubic with center X99, the Steiner
point.

A

B
C

A’

X99

a
sy
m
p
to
te

E1

E2
X39

polar conic

of X512

B’
C’

A”

C”

B”

U

V

W

Brocard axis

Figure 3.7: K084 Steiner central isogonal cubic

3.4.3 Isotomic central nK cubics. K087

Now with Ω = G, we find that all isotomic central nK are centered on the Steiner
circum-ellipse and they always have only one real asymptote.

The most remarkable is obtained with a center N = X99 (Steiner point), the real
asymptote being the perpendicular at this point to the Euler line. Its root is :

R = (Ra : Rb : Rc) =
(
(b2 + c2 − 2a2)[(b2 − c2)2 − b2c2 + 2a2SA] : · · · : . . .

)

and its equation :

∑

cyclic

Ra x (y
2 + z2)− 2

∏

cyclic

(b2 + c2 − 2a2)x = 0.

In other words, there is only one point N such as there are a central isogonal nK and a
central isotomic nK with the same center N : N must be the Steiner point.

The figure 3.8 shows the Steiner central isotomic cubic with center the Steiner point.
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A

B
C

X99

asymptote

Euler line

Figure 3.8: K087 Steiner central isotomic cubic

3.5 Oblique and axial pK isocubics

3.5.1 Oblique and axial symmetries

Let L be a (finite) line and F a point at infinity which is not that of L. The oblique
symmetry SL,F with axis L and center F maps a point M in the plane to the point M ′

such that F , M , M ′ are collinear and L bisects MM ′. When F is the infinite point of
the direction perpendicular to L, SL,F is said to be an axial (or orthogonal) symmetry.

We study the isocubics with pole Ω = p : q : r which are invariant under such oblique
or axial symmetry, in which case the cubic will be called an oblique cubic or an axial
cubic.

Lemma 1 If an isocubic meeting L∞ at the (real) point F is oblique then F must be a
flex on the cubic and the center of the symmetry.

Lemma 2 In such case, the polar conic of F in the cubic must degenerate into the real
asymptote (i.e. the tangent at F to the cubic) and the harmonic polar of F which must
be the axis of the symmetry.

3.5.2 Oblique pK
Theorem 1 Given the pole Ω and one real infinite point F on the pivotal isocubic pK,
there are at most three (one always real) pivots Pi, i ∈ {1, 2, 3}, such that pK(Ω, P ) is
an oblique cubic.

Obviously these pivots must lie on the line FF ∗. Note that all the pK(Ω, P ) with P
on FF ∗ form a pencil of cubics.

Let us denote by Ai and Li the asymptote and the axis of symmetry of pK(Ω, Pi).
Since the polar conics of F in the pK with pivot on FF ∗ form a pencil of conics, they
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must have four common points, one of them being F , the other F1, F2, F3. This leads
to the following theorem.

Theorem 2 The asymptote Ai of pK(Ω, Pi) contains the intersection Fi of the axes Lj

and Lk of pK(Ω, Pj) and pK(Ω, Pk).
The locus of the centers of the polar conics of F is a conic which must pass through

the midpoints of the four points above but, since F lies at infinity, this conic is a parabola.

3.5.3 Axial pK
Generally, for a given pole Ω, the pencil of polar conics of F contains one and only

one rectangular hyperbola which is not degenerate hence we cannot find an axial pK.
But, for a given infinite point F , there are two poles Ω1, Ω2 such that these polar
conics are rectangular hyperbolas for any pivot on the line FF ∗. Recall that F ∗ is the
Ω−isoconjugate of F .

Ω1 is the barycentric square F 2 of F (F 2 lies on the Seiner in-ellipse) which leads to
a degenerate pK into the cevians of F . These three parallels give a trivial axial pK.

With F = u : v : w, the other pole is the point Ω2 = f(F ) where

f(F ) =
SB v − SC w

c2v2 − b2w2
: : ∼ (SB v − SC w)(a2w2 − c2u2)(b2u2 − a2v2) : : .

This point f(F ) lies on the line KF 2 and can be constructed as the barycentric
product of the infinite point of the direction perpendicular to F and the trilinear pole
of the line KF 2 (this latter point on the circumcircle). This point f(F ) is also the
barycentric product of the orthocenter H and the pole of the line HF in the diagonal
rectangular hyperbola that passes through F and the in/excenters of ABC.

Hence the following theorem :

Theorem 3 For a given infinite point F , the cubic pK(f(F ), P ) is such that the polar
conic of F is a rectangular hyperbola for any pivot P on the line FF ∗.

These polar conics belong to a same pencil of rectangular hyperbolas having parallel
asymptotes and passing through two other (real or not) points. We already know that
the locus of their centers is a parabola which must degenerate into L∞ and another
line. To draw this line, it is enough to remark that the pencil contains two particular
hyperbolas Hc and Hd with centers Oc and Od.

– Hc is the rectangular circum-hyperbola passing through F , F ∗,
– Hd is the diagonal rectangular hyperbola passing through F , the vertices of the

anticevian triangle of F and its orthocenter5. Its center Od is the trilinear pole of the
line Ff(F ). It lies on the circumcircle of ABC, on the circum-conic with perspector
f(F ) and is the antipode of F ∗ on this conic.

Actually, F ∗ and Od are two vertices of the circum-conic with perspector f(F ). Note
that Hd also contains the (real or not) fixed points of the isoconjugation with pole f(F ).
See figure 3.9.

From this we deduce that all the rectangular hyperbolas of the pencil are centered
on the line OdOc. Among them there are three degenerate hyperbolas :

– one into L∞ and the line through the two finite (real or not) common points of the
pencil which leads to an oblique cubic,

5Anticevian triangle of an infinite point F : the line AF meets BC at a point whose harmonic
conjugate in B, C is A′. The line AA′ is a sideline of the sought triangle. Similarly, draw the lines BB′

and CC′.
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Figure 3.9: The two hyperbolas Hc, Hd

– two pairs of perpendicular lines, each line passing through one finite point and one
infinite point of the four basis points of the pencil of polar conics.

This shows that there are two corresponding possible pivots on FF ∗ although they
might not be always real. This will be the case when Hc and Hd do intersect. Hence we
obtain :

Theorem 4 For a given infinite point F , there are two (not necessarily real) pK which
are invariant under the axial symmetry with axis a direction perpendicular to F .

Let now suppose that Hc and Hd have two real (finite) common points M1 and M2.
These points lie on the line Kf(F ) – which is the polar of G in Hd – and on the Thomson
cubic K002 hence M1 and M2 are two G−Ceva conjugate points since K is the isopivot
of K002.

The perpendiculars A1, A2 at M1, M2 to FF ∗ meet the line OcOd at O1, O2 which
are the centers of the degenerate polar conics. This gives the axes A1, A2 and the
real asymptotes (the perpendiculars at O1, O2 to these axes) of the sought cubics. The
reflections of F ∗ in these axes are the sought pivots P1, P2 of the cubics.

Clearly, these two pivots are symmetric with respect to the center ω of the circum-
conic with perspector f(F ). See figure 3.10.

3.5.4 Isotomic and isogonal axial pK
The transformation f above is not defined for A, B, C, H and the in/excenters. It

maps any infinite point F to a point which lies on the quintic Q = Q053 which has
equation ∑

cyclic

a4[a2(y − z)− 3(b2 − c2)x]y2z2 = 0.

Q contains the following points :
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Figure 3.10: Construction of the pivots of the axial pK

• A, B, C (which are double),

• the midpoints of ABC (images of the infinite points of the altitudes),

• K (which is triple),

• X1989, the image of X30, the infinite point of the Euler line,

Figure 3.11 shows the two axial pK obtained with F = X30, one of them beingK528.
Since Q does not contain the centroid G, we see that there is no isotomic axial pK.
f maps any point on the McCay cubic to the Lemoine point K and, in particular, its

infinite points which are also the infinite points of the altitudes of the Morley triangle.
Thus, we have another theorem for isogonal axial pK.

Theorem 5 There are six isogonal axial pK. The axes of symmetry are parallel to the
sidelines of the Morley triangle.

3.6 Oblique and axial nK isocubics

3.6.1 Oblique nK
We shall now suppose that the isocubic is a nK with pole Ω, root P meeting L∞ at

F which is a flex on the cubic.
This isocubic has already four real common points A, B, C, F ∗ with CΩ, the circum-

conic with perspector Ω, hence it must have two other common points whose isoconju-
gates are at infinity. This gives the following

Lemma 3 Any isocubic nK passing through a real infinite point F contains the infinite
points of CΩ.
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Figure 3.11: Two axial pK

According to §1.5.1, the (real or not) asymptotes of the cubic at these two points
pass through F ∗.

We know that two isoconjugate points M and M∗ on a nK share the same tangential.
Since that of F is F , we deduce that the tangential of F ∗ must be F also, hence the
tangent at F ∗ to the cubic is parallel to its real asymptote at F and the axis of symmetry
must contain F ∗.

Denote by U , V , W the traces of IP(P ) and by N(P ) the Newton line of the quadri-
lateral formed by IP(P ) and the sidelines of ABC. Following §1.5.3, the nK is the locus
of M such that M and M∗ are conjugated with respect to a fixed circle centered at the
radical center of the circles with diameters AU , BV , CW and FF ∗ which turns out to
be the infinte point of a perpendicular to IP(P ). Our circle degenerates into L∞ and
IP(P ).

On the other hand, the polar line of M in such degenerate circle is the homothetic
of IP(P ) under hM,2 therefore we have the following theorems.

Theorem 6 Any nK with a flex at infinity is the locus of M such that N(P ) bisects
MM∗. Furthermore, this flex must be the infinite point of N(P ) which means that P
must lie on N(F ).

Theorem 7 The real asymptote AF is the homothetic of N(P ) under hF ∗,2. It meets
the cubic at X which lies on the circum-hyperbola γF passing through F , F ∗ and on the
tangent at F ∗ to the cubic.

Consequence
The polar conic CF of F in the cubic is a hyperbola which passes through the midpoint
of any two points M , N collinear with F . It obviously contains F and the midpoints of
F ∗ and X∗, A and UF ∗ ∩AF , U and AF ∗ ∩ UF , etc.
One of the asymptotes of CF is XF and the other the parallel at F ∗ to the polar line of
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F in CΩ6.

Let then P be a point on N(F ) and its trilinear polar IP(P ) meeting the sidelines
of ABC at U , V , W . Any line passing through the infinite point F meets the cubic
again at M , N . According to the theorem above, the midpoints of MM∗ and NN∗ lie
on N(P ) hence M∗N∗ contains F . Furthermore, MN∗ and NM∗ pass through F ∗.

Conversely, any line LF through F is the Newton line of some P lying on N(F ) which
is easily constructed as follows : hA,2(LF )∩BC, hB,2(LF )∩CA, hC,2(LF )∩AB are three
collinear points and P is the trilinear pole of the line passing through them.

Naturally, if we take P anywhere on N(F ), the corresponding nK(Ω, P, F ) is not an
oblique (nor a central) cubic. We obtain the following theorems.

Theorem 8 nK(Ω, P, F ) is an oblique cubic if and only if X = F (at infinity) hence
X∗ = F ∗.

In this case, the real (inflexional) asymptote is that of γF passing through F (and
the center OF of γF ). Thus, N(P ) is its homothetic under hF ∗,1/2. This easily gives the
root P of the cubic on N(F ) and its construction follows with §1.5.4. The axis is the
parallel at F ∗ to the polar line of F in CΩ.

Theorem 9 nK(Ω, P, F ) is an central cubic if and only if X = F ∗ and X∗ = F . The
center is F ∗ and the real (inflexional) asymptote is FF ∗.

Refer back to §3.3 for another approach and more details.

3.6.2 Axial nK
An oblique nK(Ω, P, F ) becomes an axial cubic if and only if its real asymptote is

perpendicular to its axis which means that these two lines must be parallel to the axes
of CΩ. This gives two distinct situations :

1. CΩ is not a circle i.e. Ω 6= K : there are only two axial non-isogonal nK. The
asymptote of one of them is parallel to the axis of the other.

In particular, there are two isotomic axial nK with axes and asymptotes parallel
to the axes of the Steiner ellipse. The figure 3.12 shows one of the two cubics.

2. CΩ is a circle (the circumcircle) i.e. Ω = K : there are infinitely many axial isogonal
nK. They are all focal cubics forming a net of cubics with singular focus on the
circumcircle. See §4.1.4.

3.7 pK and harmonic homologies

3.7.1 Introduction

In paragraphs 3.1, 3.2, 3.5 we have met central, oblique and axial isocubics pK. Since
these transformations are special cases of harmonic homologies, we now generalize and
characterize isocubics which are invariant under such homologies.

Let us denote by h the harmonic homology with center X = α : β : γ and axis L, the
trilinear polar of the point Q = l : m : n. We suppose that X does not lie on L.

6In other words, this second asymptote is parallel to the conjugated diameter of the real asymptote
AF with respect to CΩ. It is the locus of the center of γF when P traverses N(F ).
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Figure 3.12: An axial isotomic nK

Remember that h maps any point M = x : y : z (distinct of X) to the point M ′

harmonic conjugate of M with respect to X and L ∩XM . The barycentric coordinates
of M ′ are

(−mnα+ nlβ + lmγ)x− 2lα(ny +mz) : :

or (
−α

l
+

β

m
+

γ

n

)
x− 2α

( y

m
+

z

n

)
: : .

When L = L∞ , h is a central symmetry. When X is an infinite point, h is an oblique
or axial symmetry.

3.7.2 Theorem

For a given harmonic homology h, there is a unique cubic pK = pK(Ω, P )
with pole Ω, pivot P which is invariant under h.

Its pole Ω is the barycentric product of Q and Q/X with coordinates

p : q : r = lα

(
−α

l
+

β

m
+

γ

n

)
: : .

In other words, the cubic is invariant in the isoconjugation which swaps Q and the
cevian quotient Q/X but these two points do not necesseraly lie on the cubic.

Its pivot is h(X∗) where

X∗ = l

(
−α

l
+

β

m
+

γ

n

)
: : ,

hence

P = u : v : w = l

(
−3

α

l
+

β

m
+

γ

n

)
: : .

Note that Q, X, X∗ and P/X, Q/X, X∗ are collinear.
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Figure 3.13: pK invariant under harmonic homology

3.7.3 Properties

1. X is a flex on the cubic. Its polar conic decomposes into the harmonic polar L and
the inflexional tangent at X. This tangent passes through Q/X. See figure 3.13.

2. The cubic contains A′ = h(A), B′ = h(B), C ′ = h(C) where

A′ = −α

l
+

β

m
+

γ

n
: −2

β

l
: −2

γ

l
.

3. The cubic meets L at three always real (and rational) points Qa, Qb, Qc and the
tangents to the cubic at these points concur at X. We have

Qa = 2α : β −m
(α
l
+

γ

n

)
: γ − n

(
α

l
+

β

m

)
,

the other points similarly. Obviously, these three points are the only points of the
cubic fixed by the homology. Furthermore, Qa is the intersection of the lines BC ′

and CB′.

4. The three triangles ABC, A′B′C ′, QaQbQc (although degenerate) are triply per-
spective at X, X∗ and P hence this type of cubic can be seen as a Grassmann
cubic.

The cevian triangle PaPbPc of P is also perspective with QaQbQc at P/X, another
point on the cubic and on the line XP ∗ (see §1.4.1, remark 2).

5. For any point M on the cubic, we find the following collinearities :

– M , X, h(M),

– M , M∗, P ,

– M , P ∗, P/M ,
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– M , P/X, h(M∗)∗.

This easily gives the polar conic of M in the cubic.

6. If M and M∗ are two isoconjugate points on the cubic then X∗, h(M), h(M∗) are
three collinear points on the cubic.

7. For any M on the cubic, the polar conics of M and h(M) meet at four points which
are the poles of the line Mh(M) in the cubic. Since Mh(M) passes through X,
these poles lie two by two on L and on the inflexional tangent at X.

8. If X ′ and X ′′ are the two other real flexes on the cubic collinear with X, the cubic
is also invariant under two other homologies with centers at these points. The three
corresponding axes L, L′, L′′ are concurrent.

3.7.4 pK with given axis and pole

Theorem : for a given axis L and a given pole Ω, there is a unique pK
invariant under a harmonic homology.

The center of the harmonic homology is

X =
p

l

(
− p

l2
+

q

m2
+

r

n2

)
: : ,

the isoconjugate of the trilinear pole Q of L in the isoconjugation with pole Q2/Ω.

Examples :

• with Ω = K and L = L∞ , we obtain the Darboux cubic, actually a central cubic
centered at X = O.

• with Ω = K and L = GK, we obtain the cubic with center X39, pivot P =
a4 + b2c2 + 3a2(b2 + c2) : : .

• with Ω = G and L = IP(X75), we obtain the cubic with center X63, pivot P =
(b2− c2)2/a+a(2b2+2c2− 3a2) : : . (isogonal conjugate of X2155) passing through
G, X92, X189, X329, X2184. The inflexional tangent at X63 passes through I. This
cubic is the isogonal transform of pK(X32,X610). See figure 3.14.

3.8 nK and harmonic homologies

This paragraph borrows several ideas by Wilson Stothers.

3.8.1 Generalities

Let us consider the cubic K = nK(Ω, P,Q) with pole Ω = p : q : r, root P = u : v : w
passing through Q = α : β : γ (not lying on a sideline of ABC) and obviously through
its isoconjugate Q∗.

This cubic has equation :

αβγ
∑

cyclic

ux(ry2 + qz2) = xyz
∑

cyclic

uα(rβ2 + qγ2).
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Figure 3.14: Isotomic pK invariant under harmonic homology

Q is a flex or a node on the cubic if and only if it lies on the hessian of the cubic
which expresses that the polar conic C(Q) of Q is degenerate. A calculation shows that
this condition is equivalent to

∑

cyclic

αvw = 0 (3.1)

or

∑

cyclic

pαu(rβ2 − qγ2)2 = 0. (3.2)

The equation (3.1) shows thatQmust lie on IP(P ) i.e. P must lie on C(Q), the circum-
conic with perspector Q. But K already meets IP(P ) at three points (on the sidelines
of ABC) hence it must degenerate into IP(P ) and the circum-conic with perspector P ∗

which is its isoconjugate.

The equation (3.2) can be construed as

1. Q must lie on the circum-quintic with equation
∑

cyclic

pux(ry2 − qz2)2 = 0 (3.3)

passing through the fixed points of the isoconjugation in which cases K is a cK.

2. Ω must lie on the cK with equation
∑

cyclic

αux(zβ2 − yγ2)2 = 0 (3.4)

with singularity the barycentric square Q2 of Q, with root the barycentric product
Q×R of Q and R.
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3. P must lie on the line L(Ω, Q) with equation

∑

cyclic

pα(rβ2 − qγ2)2 x = 0, (3.5)

which is IP(P1) where P1 =
1

pα(rβ2 − qγ2)2
: : .

This line L(Ω, Q) contains the two following points :

• P2 =
1

α(rβ2 − qγ2)
: : , the trilinear pole of the line QQ∗,

• P3 =
α

p(rβ2 − qγ2)
: : , the Q2-isoconjugate of IP(Q) ∩ IP(Q∗).

Note that these two points lie on C(Q).

In both cases, the cubic degenerates :

• nK(Ω, P2, Q) is the union of the line QQ∗ and the circum-conic which is its
isoconjugate,

• nK(Ω, P3, Q) is the union of IP(P3) (which contains Q) and the circum-conic
which is its isoconjugate with perspector P ∗

3 .

3.8.2 nK(Ω, P, Q) with P on L(Ω, Q)

Let then P be a point on L(Ω, Q) distinct of P2 and P3.
All the corresponding cubics nK(Ω, P,Q) form a pencil of cubics which is generated

by the two decomposed cubics nK(Ω, P2, Q) and nK(Ω, P3, Q).
For any cubic K of the pencil, we have the following properties :

1. K passes through A, B, C, Q, Q∗,

2. the tangent at Q is the line IP(P3),

3. the tangent at Q∗ is the line QQ∗,

Note that these two lines are independent of P and intersect at Q.

4. The polar conic of Q is the union of IP(P3) and the harmonic polar H(Ω, Q) of Q
in K. H(Ω, Q) passes through Q∗ and, for any point M on this line, the polar line
of M in K passes through Q.

Thus, K must meet H(Ω, Q) at two other (real or not) points Q1, Q2 which are
the common points of H(Ω, Q) and the conic which is its isoconjugate (this conic
contains Q). Obviously, the tangents at Q∗, Q1, Q2 to the cubic concur at Q.

It follows that any line through Q meets the cubic K at two other points M , M ′

and the line H(Ω, Q) at N such that N is the harmonic conjugate of Q with respect
to M , M ′. In other words, K is invariant under the harmonic homology with axis
H(Ω, Q) and center Q.

Several special cases are interesting :

• when Q lies at infinity, K is an oblique nK (see §3.6.1),
• when Q∗ lies at infinity, K is a central nK (see §3.3),
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3.8.3 Special nK(Ω, P, Q) with P on L(Ω, Q)

We have already seen that we obtain two decomposed cubics when P is either P2 or
P3.

When P is choosen so that nK(Ω, P,Q) contains one of the fixed points of the iso-
conjugation, the cubic is a cK.

In general, this pencil of cubics also contains one and only one nK0 when P is the
point

P4 = p(rβ2 − qγ2)[p(pβ2γ2 + qγ2α2 + rα2β2)− 3qrα4]/α : : ,

the common point of L(Ω, Q) and the line D(Ω, Q) with equation

∑

cyclic

α(rβ2 + qγ2)x = 0. (3.6)

D(Ω, Q) is IP(Z∗) where Z = pα(rβ2 + qγ2) : : , the pole of the line QQ∗ in the
circum-conic through Q and Q∗.

Naturally, if these two lines are equal, all the cubics of the pencil are nK0. This arises
when ∑

cyclic

qrα4[α(rβ − qγ)(rβ2 + qγ2)− 3pβγ(rβ2 − qγ2)] = 0 (3.7)

which can be construed as Ω lies on a circum-quartic Q(Q).

For example, with Q = K, we find that the quartic contains X184, the barycentric
product of K and O, and that P must lie on the line X110X112 containing the point
E409 = a2(b2 − c2)SA(b

4 + c4 − a4 − b2c2) : : . This gives the cubic nK0(X184, E409) with
center K, with axis OX647, with inflexional tangent KX25. See figure 3.15.

A

B C

Q=K

Q2

H(Ω,Q)

Q*=O

Q1

Figure 3.15: nK0 invariant under harmonic homology



Chapter 4

Circular isocubics
Inversible isocubics

This chapter is a generalization of [20]. See also [10, 11]. It ends with inversible
isocubics which are a special case of circular isocubics. A sequel of this chapter is found
in §8.5.

Some “unusual” examples of such cubics are shown.

Since the two circular points at infinity are isogonal conjugates, we have two different
situations examined in the two following paragraphs.

4.1 Main theorems for isogonal cubics

See [14] for details.

4.1.1 Pivotal isogonal circular cubics

• Theorem : all pivotal isogonal circular cubics are in the same pencil of
cubics.

An isogonal pK is circular if and only if its pivot P is on L∞ . All the cubics pass
through A, B, C, the four in/excenters and the two circular points at infinity.

gP is a point on the circumcircle : it is the intersection of the curve with its real
asymptote. The singular focus F is the antipode of this point. The line OP is
the orthic line of the cubic : the polar conic of any of its points is a rectangular
hyperbola.

The most famous is the Neuberg cubic K001 with pivot X30 and singular focus
X110. It is the only cubic of this type that contains O (and H).

Another worth noticing is K269, the one with pivot X515 (point at infinity of IH).
Its singular focus is X109 and it also passes through X36, X40, X80, X84, X102.

See [9] for other examples.

• Pivotal isogonal focal cubics

It is easy to see that there are only three pivotal isogonal focal circular cubics (i.e.
Van Rees focals) : they are obtained when the pivot is the point at infinity of one
of the altitudes of ABC.

66
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Indeed, the isogonal conjugate of the point at infinity of one of the altitudes of ABC
is the antipode of the corresponding vertex of ABC on the circumcircle. Thus, the
singular focus of such focal cubic must be a vertex of ABC and the focal tangent
contains O.

More precisely, let pKA be the cubic whose pivot is the infinite point of the altitude
AH. We have the following properties, see figure 4.1.

1. the singular focus of pKA is A and its polar conic is the A−Apollonian circle
of ABC. This is the circle with diameter the intersections of BC with the two
bisectors of angle A. This circle contains A and the isodynamic points X15,
X16.

2. the focal tangent at A passes through O and the antipode AO of A on the
circumcircle. AO is the tangential of A on pKA and the isopivot of pKA.

3. the real asymptote is the parallel at AO to the altitude AH or equivalently,
the reflection about O of this altitude.

4. the orthic line of the cubic is the perpendicular bisector ∆A of BC hence the
polar conic of any point on ∆A is a rectangular hyperbola whose center lies
on the circle EA which is the reflection of the A−Apollonian circle about ∆A.
This circle EA is in a way the Euler circle of the cubic.

5. in particular, the polar conic of the infinite point of ∆A is the diagonal rect-
angular hyperbola whose center is the reflection A′ of A about ∆A. Note that
this point A′ lies on the circumcircle. This diagonal rectangular hyperbola
contains the in/excenters of ABC and the midpoint of BC.

6. it follows that any circle with center Ω on ∆A which is orthogonal to EA (and
therefore passing through B and C) meets the line AΩ at two points on pKA.

7. pKA is an isogonal nK with respect to infinitely many triangles. Let M1, M2

be two points on pKA. The circum-circle of AM1M2 meets pKA again at M3

which is the reflection about the diameter passing through A of the isogonal
conjugate (with respect to the triangle AM1M2) of the infinite point of the
altitude AH.

Now, if M ′
i is the reflection of Mi in ∆A, the parallel at M ′

i to ∆A meets the
line MjMk at Ui on the cubic. These three points Ui are collinear and the
trilinear pole of the line U1U2U3 with respect to the triangle M1M2M3 is the
root of the cubic.

For any point Z on pKA, the isogonal conjugates gZ, Z∗ of Z in ABC,
M1M2M3 respectively lie on a line passing through A. Since Z∗ also lies
on the reflection of the line ZgZ in ∆A (hence parallel to ∆A), this point Z

∗

is independent of the triangle M1M2M3.

This property can actually be adapted to any focal cubic.

8. pKA has three real prehessians and one of them pHA is a stelloid with radial
center A. Its asymptotes are the parallels at A to those of the McCay cubic.
Obviously, the nine common points of pKA and pHA are the points of inflexion
of the two curves.

9. apart isogonal conjugation, pKA is invariant under seven other transformations
namely :

– four inversions, each one with pole one in/excenter which swaps one ver-
tex of ABC and the corresponding other collinear in/excenter. These
in/excenters are called centers of anallagmaty of the focal cubic.
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– three involutions swapping any point of the plane with the center of its
polar conic with respect to one of the three prehessians. When we take
pHA, this involution is given by :

(x : y : z) 7→ (a2yz + b2zx+ c2xy : −b2z(x+ y + z) : −c2y(x+ y + z)).

This is the commutative product of a reflection about a A−bisector of
triangle ABC and an inversion in the circle with center A, radius

√
bc.

The two other involutions are similar and the two corresponding circles
have their centers on the A−median of ABC.

A

B
C

O X1

A'

Ao

Ga

pKA

Ia

Ib

Ic

pHA

EA

∆A

Figure 4.1: The pivotal isogonal focal cubic pKA

• Pivotal isogonal degenerate cubics

A pivotal isogonal cubic degenerates into a line and a circle if and only if P is the
point at infinity of one of the six bisectors. In this case, the line is the bisector and
the circle passes through the remaining in/excenters and vertices of ABC.

• Construction of a pivotal isogonal circular cubic knowing its pivot

Let ℓ be the line through I (incenter) and P (at infinity) and let (c) be a variable
circle tangent at I to ℓ, centered at ω on the perpendicular at I to ℓ.

The perpendicular at gP to the line ωF meets (c) at M and N on the cubic.
Following §1.4, remark 2, we see that N = gP/M

• Further remarks

1. The real asymptote is parallel at gP to ℓ and meets the circumcircle again at
E.
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When P traverses L∞ , the real asymptote envelopes a deltoid, the contact
point being the symmetric of E about gP . This deltoid is the anticomplement
of the Steiner deltoid H3. It is the envelope of axis of inscribed parabolas in
triangle ABC.

2. The polar conic of P is the rectangular hyperbola centered at E passing
through the four in/excenters. ABC is autopolar in this hyperbola.

There are two other points P1 and P2 on the cubic (not always real) whose
polar conics are rectangular hyperbolas : they lie on the line OP and, since
they are isogonal conjugate, on the rectangular hyperbola ABCHgP as well.
From this it is obvious they are two points on the McCay cubic and their
midpoint is on the polar conic of P .

3. The line gMgN passes through a fixed point Q = P/gP of the cubic which
is the common tangential of gP and the vertices of the cevian triangle of P .

4. The tangents at M and gM to the cubic pass through the isogonal conjugate
of the midpoint of MgM .

5. The poloconic of L∞ is the hyperbola with focus F , directrix the parallel at O
to the Simson line of F , eccentricity 2. One of its vertices is E and the other
S is the homothetic of E under h(F, 1/3). Note that the line FE is the focal
axis and that the asymptotes are obtained by rotating this focal axis about
the center of the hyperbola with angles +60◦ and −60◦.

For any choice of P , this poloconic passes through the vertices of the circum-
tangential triangle formed by the points Ti on the circumcircle such that the
line Ti gTi is a tangent to the circumcircle. See figure 4.2 for an illustration
with the Neuberg cubic K001.

6. The in/excenters are four centers of anallagmaty of the cubic. In other words,
the cubic is invariant under four inversions with pole one in/excenter Ix, each
swapping one vertex of ABC and the in/excenter that lies on the line through
this vertex and Ix.

4.1.2 Non-pivotal isogonal circular cubics

• Theorem : all non-pivotal isogonal circular cubics are in the same net
of cubics.

They all are Van Rees focals with singular focus on the circumcircle.

A computation shows that there is only one non-pivotal isogonal circular cubic
with given root P (u : v : w). Its equation is :

2(SAu+ SBv + SCw)xyz +
∑

cyclic

ux(c2y2 + b2z2) = 0

or ∑

cyclic

ux(c2y2 + b2z2 + 2SA yz) = 0

in which we recognize the equation of the circle centered at A passing through O.
Hence, the net is generated by three decomposed cubics, one of them being the
union of this circle and the sideline BC, the two others similarly.
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Figure 4.2: Polar conics and Poloconic of L∞ in an isogonal pK

The third (real) point on L∞ is Z = (v − w : w − u : u− v) which is the point at
infinity of IP(tP ) with equation ux+ vy + wz = 0.

The real asymptote is obviously parallel to this line.

The singular focus is gZ = [a2/(v − w) : b2/(w − u) : c2/(u − v)] clearly on the
circumcircle and on the cubic.

This cubic is the locus of foci of inscribed conics in the quadrilateral formed by the
four lines AB,BC,CA and UVW = IP(P ). The singular focus F of the cubic is
the Miquel point of the quadrilateral.

Equivalently, this cubic is the locus of foci of inscribed conics

– with center on the Newton line of this quadrilateral which is IP(taP ). Note that
the Monge (orthoptic) circles of these conics form a pencil of circles passing through
the (not always real) antiorthocorrespondents of P (see [31] and [22]).

– with perspector on the circum-conic with perspector P .

• Two points R and S that are not isogonal conjugates define one and only one
cubic nK of the net denoted by nKRS . Then nKRS passes through gR, gS and
through R1 = RS ∩gRgS, R2 = RgS ∩ SgR, R3 orthogonal projection on R1R2 of
RgR∩SgS. The singular focus F (on the circumcircle) is the second intersection
of the circles R2RS and R2gRgS.

If ∆ is the line through the midpoints of RgR and SgS 1, nKRS is the locus of

1These midpoints are distinct since R and S are not isogonal conjugates.



J.-P. Ehrmann and B. Gibert 71

foci of inscribed conics whose center is on ∆ and the real asymptote of nKRS is
hF,2(∆) 2.

Let us call now α, β, γ the points where ∆ meet the sidelines of the medial triangle
of ABC and U, V,W the symmetrics of A,B,C about α, β, γ respectively. U, V,W
are collinear and the trilinear pole of this line is the root P of the cubic.

Now let R′ be the intersection of the line FgR with the parallel at R to the
asymptote and define S′, gR’, gS’ likewise. The four circles with diameters RgR’,
gRR′, SgS’, gSS′ are in the same pencil F whose axis is ∆ and whose radical axis
is denoted by ∆′. The parallel at F to the asymptote intersects ∆′ at gX whose
isogonal conjugate is the point X where nKRS meets its asymptote.

From all this, we see that nKRS is :

– the locus of intersections of circle of F centered at ω with the line Fω.

– the locus of intersections of circle (of the pencil F ′) centered at Ω on ∆′ and
orthogonal to F with the perpendicular at X to FΩ.

– the locus of point M from which the segments RS and gRgS (assuming they
are not equipollent) are seen under equal or supplementary angles. For this
reason, this cubic is called an isoptic cubic.

Remark :

The pencils of circles F and F ′ are orthogonal : the base points of one are the
Poncelet points of the other. Those two points are on nKRS and are the contacts
of the two tangents from F .

• The cubic has a singularity if and only if the quadrilateral is circumscribed to a
circle i.e. if and only if UVW is tangent to one of the in/excircles i.e. if and only
if the root P is on one of the trilinear polars of the Gergonne point or one of its
harmonic associates. (See §4.3.2 below)

The singularity is the center of the circle and, consequently, those cubics are the
only conico-pivotal 3 cubics we can find among non-pivotal isogonal circular cubics.
Then, the pivot (remember it is a conic) is the envelope of the focal axes of inscribed
conics in the quadrilateral and therefore a parabola tangent to the three diagonals
of the complete quadrilateral.

• Remark :

When P lies on the orthic axis, the term in xyz vanishes and we get a pencil of
nK0 with a simpler equation :

∑

cyclic

ux(c2y2 + b2z2) = 0 with SAu+ SBv + SCw = 0.

All these cubics contain the four foci of the inscribed conic with center the Lemoine
point K.

See several examples in §4.3.3 and §4.3.4 below.

2This asymptote is perpendicular to the Simson line of F .
3See [24] and §7.3.3, §8 below



J.-P. Ehrmann and B. Gibert 72

4.1.3 Non-pivotal isogonal circular cubic with given root

We provide a detailed construction of such cubic assuming we know its root P 6= G.4

We suppose that the cubic is not unicursal. See Chapter 8 to cover this case.

1. Draw ∆P = IP(P ) intersecting ABC sidelines at U, V,W and the Newton line ∆
of the complete quadrilateral (passing through the midpoints of AU,BV,CW ).

2. The isogonal conjugate of the point at infinity of ∆ is F (singular focus) and the
homothetic of ∆ (center F , ratio 2) is the real asymptote.

3. Let A′ be the intersection of AF and the parallel at U to ∆ (B′, C ′ likewise) and
A′′ the intersection of UF and the parallel at A to ∆ (B′′, C ′′ likewise). These six
points lie on the cubic.

Let us call F the pencil of circles containing the circles with diameters AA′, BB′,
CC ′, UA′′, V B′′, WC ′′. Its axis is ∆ and its radical axis is ∆′ intersecting the
parallel at F to ∆ at X∗ isogonal conjugate of X, intersection of the cubic with its
asymptote. The tangent at F to the cubic is FX.

4. Each circle γ of F centered at ω on ∆ intersects the line Fω at two points M and
N which are on the cubic and their isogonal conjugates gM , gN as well. Notice
that MgM and NgN meet on ∆′ and that MgN and gMN are parallel to the
asymptote. The base-points (real or not) of F are on the cubic.

5. The conic through the midpoints of AA′′, BB′′, CC ′′, UA′, V B′, WC ′, FgX is
the polar conic of the point at infinity of the asymptote. This is a rectangular
hyperbola centered at Ω on the asymptote and on the circle Γ with diameter FX
belonging to F . The intersection of ∆ and ∆′ lies on the rectangular hyperbola
whose intersections with Γ are two points on the cubic.

6. the polar conic of F is the circle through F centered at the intersection of ∆′ and
the perpendicular at F to FX.

7. the circle Γ meets ∆ at E1 and E2. The lines FE1 and FE2 are the bisectors at
F of the lines FX, FX∗. These lines intersect the rectangular hyperbola above at
four (real or not) points which are the centers of anallagmaty Oi of the cubic. In
other words, the cubic is invariant under the inversions with pole Oi swapping F
and the other point Oj collinear with F and Oi.

More precisely,

– if the base-points of F are real then the cubic is bipartite and the four centers of
anallagmaty Oi are all real,

– if the base-points of F are not real then the cubic is unipartite and only two of
the four centers of anallagmaty Oi are real.

4.1.4 Non-pivotal isogonal circular cubics with given focus

Let F be a given point on the circumcircle and gF its isogonal conjugate at infinity.
All the non-pivotal isogonal circular (focal) cubics with focus F form a pencil of cubics
and their roots lie on IP(tgF)= LF . This line always contains G since tgF is a point on
the Steiner ellipse collinear with F and the Steiner point X99. Notice that the trilinear

4When P = G, the cubic decomposes into L∞ and the circumcircle.
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polars of the roots are tangent to the inscribed parabola with focus F , directrix the
Steiner line of F and perspector the point tgF . All the cubics have obviously parallel
real asymptotes and each one meets its asymptote at a point X lying on the circum-conic
ΓF through F and gF , the isogonal transform of the line FgF . The tangent at F to
ΓF meets the circumcircle again at Φ and the perpendicular at Φ to this tangent is the
locus of the centers of the circles which are the polar conics of F .

Let then ΩF be a point on this latter line and γF the circle with center ΩF passing
through F . The tangent TF at F to γF meets ΓF at the point X. The parallel at the
midpoint of FX to FgF is the Newton line of a quadrilateral such as the sought cubic is
the locus of foci of inscribed conics in this quadrilateral. The homothetic of this Newton
line under h(A, 2) meets the line BC at U and V , W are defined similarly. These three
points are collinear and the trilinear pole of the line is the root P of the cubic.

To realize the construction, take a point on the perpendicular at ΩF to FgF and
draw the circle centered at this point orthogonal to the circle with diameter FX. This
circle belongs to the pencil of circles containing γF and having the Newton line as radical
axis with it. The contacts M , N of the tangents drawn through F to this circle are two
points on the cubic.

Remark :

• The isogonal conjugate of X is the intersection of FgF with its perpendicular at
ΩF .

• The following triads of points are collinear : X, M , N - X, gM , gN - gX, M , gN
- gX, N , gM .

• The perpendicular at ΩF to FgF meets the circle with diameter FX at two (real
or not) isogonal conjugate points and the tangents at these points pass through
X. These two points also lie on the circle orthogonal to γF whose center is the
intersection of the Newton line and the perpendicular at F to XF . This circle and
this perpendicular meet at the two centers of anallagmaty E1, E2 of the cubic.

• The circle γF meets the Newton line at two (real or not) points on the cubic and
the tangents at these points pass through F . These two points lie on the isogonal
circular pK with pivot gF . Notice that the reflection F ′ of F in Φ is the tangential
of F in this pK.

Special cases :

The aforementioned pencil contains :

• one degenerated cubic into the circumcircle and L∞ obtained when P = G.

• one nK0 obtained when P is the intersection of the orthic axis and LF .

• four strophoids with nodes the in/excenters obtained when P is the intersection
of the trilinear polar of the Gergonne point (or an extraversion) and LF . This
happens when γF contains one of these in/excenters.

• one central cubic obtained when ΩF is the infinite point of the perpendicular at Φ
to FΦ.
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• one “axial” cubic obtained when ΩF lies on the perpendicular at F to FgF , the
axis of symmetry being this perpendicular. The real asymptote is the asymptote
of ΓF which is parallel to the line FgF .

The figure 4.3 shows the pencil of cubics obtained when F = X99.

A

B
C

Nodal 

     cubic

Φ

X99

I

Γ
F

Central 

    cubic

nK0Axial 

      cubic

Figure 4.3: Pencil of focal cubics with focus X99

4.2 Main theorems for non-isogonal cubics

Throughout this section, we take Ω(p : q : r) 6= K as pole of the isoconjugation which
is therefore not isogonal conjugation.
We call C∞ the circumconic which is the isoconjugate of L∞ and whose equation is :

p

x
+

q

y
+

r

z
= 0 ⇐⇒ pyz + qzx+ rxy = 0.

C∞ is the circum-conic with perspector Ω. Its center is cΩ = [p(q + r − p)] = G/Ω.
C∞ intersects the circumcircle at A,B,C and a fourth point SΩ which is the trilinear
pole of the line KΩ. SΩ is analogous to the Steiner point (obtained when Ω = G) and
its coordinates are [1/(b2r − c2q)].
Now we call δΩ the line which is the isoconjugate of the circumcircle and whose equation
is :

a2

p
x+

b2

q
y +

c2

r
z = 0 ⇐⇒ a2qrx+ b2rpy + c2pqz = 0.

δΩ is clearly IP(tgΩ). δΩ is analogous to the de Longchamps line (obtained when Ω = G).
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4.2.1 Pivotal non-isogonal circular cubics

• Theorem : for any point Ω 6= K, there is one and only one pivotal (non-
isogonal) circular pK with pole Ω.

Its pivot is :
PΩ =

[
b2c2p(q + r − p)− (b4rp+ c4pq − a4qr)

]

which is the reflection of SΩ in δΩ.

The two circular points at infinity being J1,J2 and their isoconjugates being
J ∗
1 ,J ∗

2 , it is interesting to remark that the pivot PΩ is the intersection of the
imaginary lines J1J ∗

1 and J2J ∗
2 . Note that J ∗

1 ,J ∗
2 are the common (imaginary)

points of IP(tgΩ) and C∞.

Note also that the isoconjugate P ∗
Ω of the pivot PΩ is igP , the inverse (in the

circumcircle of ABC) of the isogonal conjugate of PΩ. It follows that, if PΩ 6= H
is given, then the pole Ω is the barycentric product of P and igP .

With P = u : v : w, this gives

Ω = [a2(2u(−SAu+ SBv + SCw)− (−a2vw + b2wu+ c2uv))].

The Droussent cubic is a good example when we consider the isotomic conjugation.
See [20]. See also §4.3.5 below.

• Remarks :

1. recall that PΩ is not defined when Ω = K.

2. the mapping θ : Ω 7→ PΩ has four fixed points A,B,C and X67. See §4.3.5
below.

3. θ maps any point on the orthic axis to H. Hence, all the circular pK having
their pole on the orthic axis have the same pivot H and form a pencil of cubics
passing through A,B,C,H, the feet of the altitudes and the circular points
at infinity.

• Constructions

The construction met in §1.4.3 is easily adapted in this particular situation and
the construction of the real asymptote is now possible with ruler and compass. If
TΩ denotes the reflection of SΩ about cΩ and N∗

Ω the isoconjugate of NΩ (reflection
of PΩ about TΩ, apoint on the polar conic of PΩ), then the real asymptote is the
parallel at N∗

Ω to the line PΩTΩ. T
∗
Ω is the (real) point at infinity on the cubic and

TΩ obviously lies on the cubic and on C∞ as well. It is the coresidual of PΩ, P
∗
Ω

and the circular points at infinity. This means that any circle through PΩ and P ∗
Ω

meets the cubic at two other points collinear with TΩ.

In particular, the circles APΩP
∗
Ω, BPΩP

∗
Ω, CPΩP

∗
Ω intersect the lines ATΩ, BTΩ,

CTΩ again at A2, B2, C2 respectively, these points lying on the cubic. Hence the
parallels to the asymptote at A, B, C meet the lines PΩA2, PΩB2, PΩC2 at α, β,
γ respectively, these points lying on the cubic too. A2 is the isoconjugate of α and
can also be seen as the second intersection of circles P ∗

ΩBC and P ∗
ΩPΩA.

It is now possible to construct the point X where the cubic intersects its asymptote.
The circles PΩAα, PΩBβ, PΩCγ meet at X∗. X is the isoconjugate of X∗ such
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that PΩ, X, X∗ are collinear on the curve. We remark that X is the common
tangential of A2, B2, C2 and X lies on the circumcircle of A2B2C2. This circle
passes through the center of the polar conic of the infinite point T ∗

Ω, a point on the
real asymptote. This conic is actually a rectangular hyperbola that meets the cubic
again at four other points which are the in/excenters of A2B2C2 and therefore the
centers of anallagmaty of the cubic.

This gives the following

• Theorem : a non-isogonal pivotal circular cubic is an isogonal pivotal
circular cubic with respect to the triangle A2B2C2.

The singular focus F of this circular cubic is the common point of the perpendicu-
lars at A2, B2, C2 to the lines XA2, XB2, XC2 (see [5], tome 3, p.90, §21) and F is
the antipode of X on the circle A2B2C2. F also lies on the perpendicular bisector
of PΩX

∗.

Let us denote by PaPbPc the cevian triangle of PΩ. The lines PaA2, PbB2, PcC2

concur on the cubic at Q whose isoconjugate Q∗ is the sixth intersection of the
cubic with the circumcircle. Q is the real intersection of the cubic with δΩ and the
line QP ∗

Ω is parallel to the asymptote.

Note that PΩ, P
∗
Ω, PΩ/P

∗
Ω, Q

∗ and PΩ, P
∗
Ω, Q, TΩ are two sets of concyclic points.

Figure 4.4 shows the Droussent cubic K008 considered as an isogonal circular
pivotal cubic.

In this case, A2 = −a2 − b2 − c2 : a2 + b2 − 2c2 : a2 − 2b2 + c2, B2 and C2 likewise.

More generally, with Ω = p : q : r, denote

UO = 2 (SA p+ SB q + SC r),

UA = 2a2qr − b2r(p+ q − r)− c2q(p− q + r),

TA =
√

16∆2qr + (c2q − b2r)2.

The corresponding quantities UB , UC and TB, TC are defined cyclically.

With these notations, we obtain :

A2 = pUO : UC : UB ; B2 = UC : q UO : UA ; C2 = UB : UA : r UO,

and the incenter of A2B2C2 is

Eo = pUOTA+UCTB +UBTC : q UOTB +UATC +UCTA : r UOTC +UBTA+UATB .

The excenters Ea, Eb, Ec are easily obtained by successively replacing in Eo the
quantities TA, TB, TC by their opposites.

For example,

Ea = −pUOTA+UCTB+UBTC : q UOTB+UATC−UCTA : r UOTC−UBTA+UATB .

Naturally, with Ω = X6, the points A2, B2, C2 are the vertices of ABC and the
points Eo, Ea, Eb, Ec are its in/excenters.
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Figure 4.4: The Droussent cubic

• Theorem : a non-isogonal pivotal circular cubic is a focal if and only if
its pole lies on one symmedian of triangle ABC.

We already know that the singular focus F of such a cubic lies on a circle having six
common points with the curve : A2, B2, C2, X and the circular points at infinity.
Hence, F must be one of the points A2, B2, C2 in order to have a focal cubic.
Taking for example F = A2, a straightforward but tedious computation shows that
the pole Ω must lie on the symmedian AK (Ω distinct of A and K).

In this case, PΩ is a point of the altitude AH and the cubic passes through its foot
Ha on BC. P ∗

Ω lies on the line AO and the cubic is tangent at A to this line. We
have SΩ = A and δΩ is parallel to BC.

4.2.2 Non-pivotal non-isogonal circular cubics

• Theorem : for any point Ω 6= K, all non-pivotal (non-isogonal) circular
cubics with pole Ω form a pencil of cubics.

The pencil is generated by the two following degenerate cubics :

– one into L∞ and the circumconic C∞ with center cΩ, the G−Ceva conjugate
of Ω,

– the other into the circumcircle and the line δΩ with singular focus the circum-
center O.

The nine base-points defining the pencil are :
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– the three vertices of ABC,

– the two circular points at infinity J1,J2,

– their isoconjugates J ∗
1 ,J ∗

2 , on δΩ and on C∞,

– the point SΩ on the circumcircle, the trilinear pole of the line KΩ, and its
isoconjugate S∗

Ω = [p(b2r − c2q)] on L∞ , the infinite point of δΩ.

The root RΩ of each cubic of the pencil lies on the line through G and tgΩ. Hence
R∗

Ω lies on the circumconic passing through K and Ω. In particular, when RΩ = G
we have R∗

Ω = Ω and when RΩ = tgΩ we have R∗
Ω = K. The two corresponding

cubics are the degenerate cubics above.

The singular focus FΩ lies on the line passing through O, P ∗
Ω (see below) and the

isogonal conjugate gPΩ of PΩ.

The polar conic of S∗
Ω is a rectangular hyperbola for any RΩ and, when RΩ traverses

the line through G and tgΩ, these hyperbolas belong to a same pencil generated
by the two following decomposed rectangular hyperbolas :

– one is the union of δΩ and the perpendicular at O to δΩ,

– the other is the union of L∞ and the line passing through the midpoint ZΩ of
PΩSΩ and the center cΩ of C∞.

Note that ZΩ lies on the Simson line of SΩ.

Special cubics of the pencil

For a given pole Ω 6= K, the pencil contains :

– one focal cubic when RΩ is the orthocorrespondent P⊥
Ω of PΩ. This is the cubic

of the pencil passing through PΩ and P ∗
Ω. See below for more details.

– the two decomposed cubics cited above with roots G and tgΩ respectively.

– one nK0.

– one proper nK+.

Construction of a non-pivotal non-isogonal circular cubic with given pole
Ω 6= K

We recall and adapt the construction of this cubic from that of §1.5.4 since we
know two isoconjugate points on the cubic namely SΩ and S∗

Ω.

With given root RΩ on the line G-tgΩ, we construct the trilinear polar lR of RΩ

meeting the sidelines of ABC at U , V , W . Note that, when RΩ varies, lR envelopes
the inscribed parabola with perspector the trilinear pole of the line G-tgΩ. This
parabola has focus SΩ and directrix the radical axis of the circles with diameters
AU , BV , CW . This directrix passes through PΩ.

The cevian lines of SΩ meet lR at U1, V1, W1. For any M on lR, we construct the
homologue M ′ of M in the involution that swaps U and U1, V and V1, W and W1.
The line SΩM

′ meets the circumconic passing through S∗
Ω and M∗ at two points

on the cubic.

In particular, the cubic contains A1 = SΩA ∩ S∗
ΩU and its isoconjugate A∗

1 =
SΩU ∩ S∗

ΩA, four analogous points being defined similarly. Note that six lines are
parallel to the real asymptote namely UA1, AA

∗
1, etc, and the conic passing through

the midpoints of any two of these six pairs of points is the rectangular hyperbola
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that is the polar conic of the infinite point S∗
Ω of the cubic. Thus the real asymptote

of the cubic passes through the center of this rectangular hyperbola.

When the involution is hyperbolic, it has two real fixed points F1, F2 on the line
lR. In this case, the lines SΩF1, SΩF2 meet the polar conic of S∗

Ω at four points and
the cubic is an isogonal pivotal cubic with respect to the diagonal triangle of the
quadrilateral formed by these four points. The pivot is S∗

Ω and the four points are
the in/excenters of the diagonal triangle. One vertex is obviously SΩ and the two
other lie on the polar line of SΩ in the polar conic of S∗

Ω. This polar line contains
PΩ and the third point of the cubic on this line is its intersection X∗ with the line
SΩS

∗
Ω, the parallel at SΩ to the asymptote.

The circumcircle of the diagonal triangle contains the center of the polar conic of
S∗
Ω and meets the real asymptote again at X on the cubic. X is the isopivot of the

cubic i.e. the isogonal conjugate of S∗
Ω with respect to the diagonal triangle.

The antipode of X on the circle is the singular focus F of the cubic and the parallel
to the real asymptote at the center of the circle (the midpoint of XF ) is the orthic
line of the cubic.

Characterization of a non-pivotal non-isogonal circular cubic with given
pole Ω 6= K

Following §1.5.3, any non-pivotal non-isogonal circular cubic with given pole Ω 6= K
is the locus of M such that M and M∗ are conjugated with respect to a circle
with center PΩ. This circle is orthogonal to all the circles with diameter any two
isoconjugate points on the cubic such as AU , BV , CW , A1A

∗
1, etc.

• Theorem : for any point Ω 6= K, there is one and only one non-pivotal
(non-isogonal) circular focal cubic with pole Ω.

Recall that its root is the orthocorrespondent P⊥
Ω of PΩ.

Its singular focus is P ∗
Ω on the curve that also passes through PΩ.

The point X∗ = SΩS
∗
Ω ∩ PΩP

∗
Ω is the isoconjugate of X intersection of the cubic

with its real asymptote. We remark that X is the antipode of P ∗
Ω on the circle

through PΩ, P
∗
Ω and SΩ. This asymptote is clearly the homothetic of the line δΩ,

center P ∗
Ω, ratio 2.

The polar conic of X passes through SΩ, S
∗
Ω, PΩ, P

∗
Ω and X : the tangents to the

cubic at SΩ, S
∗
Ω, PΩ, P

∗
Ω all pass through X. It follows that this focal cubic is an

isogonal circular pivotal cubic with respect to the triangle PΩP
∗
ΩSΩ.

This focal cubic can be seen as the locus of contacts M and N of the tangents
drawn from P ∗

Ω to the circles of the pencil generated by the two circle-points PΩ

and SΩ. The Poncelet points of this pencil of circles are the points J ∗
1 ,J ∗

2 on
δΩ. If M∗ and N∗ are the isoconjugates of M and N , we have the four following
collinearities on the cubic :

X,M,N −X,M∗, N∗ −X∗,M∗, N −X∗,M,N∗.

The polar conic of P ∗
Ω is the circle of this pencil that passes through P ∗

Ω.

An example of such cubic is given in §4.3.6 with isotomic conjugation.

Construction
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The construction of the focal cubic is fairly easy. A variable line passing through
P ∗
Ω and the center of a variable circle passing through PΩ and SΩ meets the circle

at two points on the focal cubic.

Characterization of a non-pivotal non-isogonal focal cubic with given
pole Ω 6= K

Any non-pivotal non-isogonal circular cubic with given pole Ω 6= K is the locus of
M such that M and M∗ are conjugated with respect to the circle with center PΩ

and radius 0. In other words, this cubic is the locus of M such that the circle with
diameter MM∗ contains PΩ.

4.3 Some examples

4.3.1 K060 = Kn, K073 = Ki : two circular pivotal cubics

It is known that the Neuberg cubic is the locus of point M such that the triangles
ABC and MaMbMc are in perspective, where Ma,Mb,Mc are the reflections of M about
the sidelines of ABC 5. This means that the lines AMa, BMb, CMc are concurrent at N
and then the locus of N is the cubic Kn or K060 . See figure 4.5.
Its equation is :

∑

cyclic

SA x
[
(4S2

C − a2b2)z2 − (4S2
B − c2a2)y2

]
= 0

asymptote

A

B C
O

H

E

Le

X13
X14X5

X265

Lester circle

Y

Figure 4.5: K060 or the Kn cubic

5MaMbMc is called 2-pedal triangle in [51] and Kn is the 2-cevian cubic associated to the 2-pedal
cubic (Neuberg) and the −2-pedal cubic (Napoleon).
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Kn is the circular pK with pivot X265 = giH and pole a point named Po = X1989 =
gX323

6. This point will have a great importance in the following chapters.
Kn passes through many centers such that H (the isoconjugate of the pivot), X5, X13,
X14, X30, X79, X80, X265, X621, X622

7 and is tangent at A,B,C to the altitudes of
triangle ABC.
Its singular focus (not on the curve) is the reflection of X110 about X125 or the reflection
of X399 about X5.

8

The fourth real intersection E with the circumcircle is the second intersection of the
line X5X110 with the circumcircle and also the sixth intersection with the rectangular
hyperbola through A,B,C, H, X5.

9

Its real asymptote is parallel to the Euler line at X399 or X323. Kn intersects its asymp-
tote on the line through X265 and gigX399, this point lying on the Lester circle and on
Kn.
Kn is also the isogonal image of the inversive image of the Neuberg cubic in the circum-
circle. Hence any point on the Neuberg cubic gives another point on Kn.
Kn can also be obtained as the locus of point Q center of perspective of ABC and
AMBMCM where M is on the Neuberg cubic and AM is the isogonal conjugate of A
with respect to triangle MBC (BM and CM defined similarly)

Remark :

The inversive image of the Neuberg cubic in the circumcircle is another circular pK
we shall denote by Ki or K073.
Its equation is :

∑

cyclic

a2SA x
[
c4(4S2

C − a2b2)y2 − b4(4S2
B − c2a2)z2

]
= 0

Its pivot is O and its pole is X50.
It passes through O,X15,X16,X35,X36,X54,X186, the midpoint of OX110 (which is
iX399), the point at infinity of the Euler line of the orthic triangle (isoconjugate of
X54) and obviously the inverses of all the points lying on the Neuberg cubic.

4.3.2 Isogonal circum-strophoids. The Pelletier strophoid K040

• Following §4.1.2, we find a pencil of isogonal strophoids with double point at I
(incenter) if and only if the root P is on the trilinear polar of the Gergonne point
(X7 in [38, 39]) with equation :

(b+ c− a)x+ (c+ a− b)y + (a+ b− c)z = 0

• One case is particularly interesting : when P is X514 (point at infinity of the
trilinear polar above), we obtain the isogonal strophoid with equation :

∑

cyclic

(b− c)x(c2y2 + b2z2) + 2(b− c)(c− a)(a− b)xyz = 0

It is the locus of foci of inscribed conics whose center is on the line IG.
6X323 is the reflection of X23 about X110, where X23 = iG and X110 is the focus of the Kiepert

parabola. Po is also the barycentric product of the Fermat points.
7X621, X622 are the anticomplements of the isodynamic points X15, X16 resp.
8This point is E2027 = [2(SB b4 + SC c4 − SA a4)− a2b2c2].
9This point is X1141 = 1/

[
(4S2

A − b2c2)[a2(b2 + c2)− (b2 − c2)2]
]
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It passes through X1, X36, X80, X106 (singular focus), X519 and the foci of the
Steiner inscribed ellipse.The nodal tangents are parallel to the asymptotes of the
Feuerbach rectangular hyperbola.

• Another case is worth noticing : when P is the perspector of the Feuerbach hyper-
bola i.e. the intersection of all the trilinear polars of the points of the Feuerbach
hyperbola. This point is X650 and is sometimes called Pelletier point with coor-
dinates : [a(b − c)(b + c − a)]. The trilinear polars of I,H, the Gergonne and the
Nagel points and many more all pass through it.

We shall call Pelletier strophoid the circum-strophoid with root at this point. See
figure 4.6.

A

B C

anti-orthic

   axis

X105

asymptote

X

I

Feuerbach 

 hyperbola

X1155

X1156

trilinear polar 

    of X650

Figure 4.6: K040 the Pelletier strophoid

Its equation is :

∑

cyclic

a(b− c)(b+ c− a) x (c2y2 + b2z2) = 0

Its singular focus is X105 = gX518 (X518 is the point at infinity of the line IK).

This cubic is the locus of foci of inscribed conics whose center is on the line IK.

X243 and X296 are two isogonal conjugates lying on it.

Another point on the cubic is the intersection E of OI with the anti-orthic axis.

It is X1155 in [39] with coordinates :

[
a (b2 + c2 − 2a2 + ab+ ac− 2bc)

]
=

[
a
(
(b− c)2 + a (b+ c− 2a)

)]

gE = X1156 also lies on the cubic and is the last common point with the Feuerbach
hyperbola.

• The construction of the isogonal circum-strophoid Sℓ with double point at I and a
real asymptote parallel to the given line ℓ is fairly easy :
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First, construct the isogonal conjugate F of the point at infinity of ℓ 10 (F is the
singular focus) and the circle (γ) centered at I passing through F . Then, draw the
rectangular hyperbola Hℓ through I, F and the three inversive images of A,B,C
with respect to (γ). If M is on Hℓ, the locus of its inversive image in (γ) is Sℓ.
(See [41] for more informations)

Another very simple technique (due to McLaurin) consists in drawing the line ∆
parallel to ℓ at F as defined above and take the symmetric F ′ of I about F . Then,
for any point m on ∆, let M be the intersection of the perpendicular at m to F ′m
and the parallel at I to F ′m. The locus of M is Sℓ.

From this it is clear that Sℓ is the pedal curve with respect to I of the parabola with
focus at F ′ and directrix the parallel at I to ℓ. Hence for any point M on Sℓ, the
line through M and gM is tangent to the parabola. Sℓ is an isogonal conico-pivotal
(see [24] and §8) cubic with pivotal conic the parabola described above.

The real asymptote is the reflection of ∆ about I. The projection of I on ∆ is
on Sℓ and its isogonal conjugate is the intersection of Sℓ with its asymptote. The
circle with diameter IF ′ intersects ∆ at two points which are on the two tangents
at I. The perpendicular at F to IF intersects the bisectors of the tangents at I
at two points where the tangents are parallel to the asymptote. They are the two
centers of anallagmacy of Sℓ.

Finally, the circle centered at I through F intersects Sℓ at F and three other points
which are the vertices of an equilateral triangle.

Remark :

If ℓ is parallel to a bisector of ABC, say AI, Sℓ degenerates into the union of this
bisector and the circle through B,C and the excenter which is on AI.

4.3.3 Three circular isogonal Brocard cubics

• K018 = B2

(We start from §4.1.2 again) If P is the point at infinity of the orthic axis 11 (X523

in [39]), we find a nice Van Rees focal denoted by B2 with focus at the Parry point
(X111 in [38, 39]) and its asymptote parallel to the line GK. See figure 4.7.

The cubic passes through G,K, the Fermat points X13,X14, the isodynamic points
X15,X16, the equi-Brocard center X368

12, its isogonal conjugate, X524 (point at
infinity of GK), the vertices of the second Brocard triangle and their isogonal
conjugates.

Its equation is : ∑

cyclic

(b2 − c2) x (c2y2 + b2z2) = 0

B2 is the locus of :

1. contacts of tangents drawn from X111 to the circles passing through G and
K.

10Draw a parallel at A to ℓ and reflect this parallel about the bisector AI . F is its second intersection
with the circumcircle.

11This point is the perspector of the Kiepert hyperbola.
12See [38], p.267
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Figure 4.7: K018 = B2 the second Brocard cubic

2. foci of inscribed conics whose center is on the line GK. From this, it is obvious
that B2 passes through the foci of the inscribed Steiner ellipse.

3. point M such that the pole of the line MgM in the circum-conic through M
and gM lies on the Brocard axis OK. (See proposition 2 in §1.5.2)

4. point M such that K,M and the orthocorrespondent of M are collinear. (See
footnote in §7.2.2)

5. point M such that the three circles MBC, MCA, MAB meet the sidelines
of triangle ABC again at six points lying on a same conic.

• K019 = B3

If P is the point [a2(b2 − c2)SA]
13, we get another Van Rees focal denoted by B3

with focus at the Tarry point (X98 in [38, 39]) with its asymptote parallel to the
line OK. B3 passes through the two Brocard points Ω1,Ω2. Its equation is :

∑

cyclic

a2(b2 − c2)SA x (c2y2 + b2z2) = 0

B3 is the locus of :

1. intersections of a circle through Ω1Ω2, whose center is Ω, with the line ΩX98.

2. contacts of the tangents drawn from X98 to the circles centered on Ω1Ω2 and
orthogonal to the circle with diameter Ω1Ω2.

3. foci of inscribed conics whose center is on the line OK.

4. point M such that the pole of the line MgM in the circum-conic through M
and gM lies on the Euler line.

13This point is X647 in [38, 39]. It lies on the orthic axis. It is the perspector of the Jerabek hyperbola.
It is also the isogonal conjugate of the trilinear pole of the Euler line
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• K021 = B5 : Equal-area cevian triangles cubic

In a posting to the Math Forum dated Nov. 2,1999 (see also [40]), Clark Kimberling
raised and solved the following problem : the locus of point M such that the
cevian triangles of M and gM have the same area is the cubic denoted by B5 with
equation : ∑

cyclic

a2(b2 − c2)x(c2y2 − b2z2) = 0

This is clearly an isogonal circular pK with pivot X512 (point at infinity of the
Lemoine axis), with singular focus X98 (Tarry point) not on the curve. The cubic
passes through X99 (Steiner point = gX512) and the two Brocard points.

• Remark :

There are two other “Brocard” isogonal (non circular) cubics :

– K017 = B1 is a nK through G,K,X99 = Steiner point, X512 = gX99, the
vertices of the first Brocard triangle and their isogonal conjugates.

Its equation is : ∑

cyclic

(a4 − b2c2) x (c2y2 + b2z2) = 0

– K020 = B4 is a pK with pivot X384
14 through many centers such that I, O,

H, X32, X39, X76, X83, X194, the vertices of the first Brocard triangle and
their isogonal conjugates.

Its equation is : ∑

cyclic

(a4 + b2c2) x (c2y2 − b2z2) = 0

4.3.4 K072 another remarkable Van Rees focal

We know that there is a unique isogonal pK through the points G, O, H, K and it
is the Thomson cubic with pivot G.
There is also a unique isogonal nK through the same points and it is a Van Rees focal
with singular focus F = X842 .15 See figure 4.8.

This cubic is the locus of point M such that the segments GO and KH are seen
under equal or supplementary angles. It is also the locus of point P whose pedal circle
is centered on the parallel at X5 to the line GX98.

14X384 is center of perspective of the first Brocard triangle and the triangle formed by the isogonal
conjugates. This point is on the Euler line.

15F is also :

• the reflection of X98 (Tarry point) about the Euler line.

• the reflection of X74 = gX30 about the Brocard line.

• the second intersection (apart from X112) of the circumcircle and the circle OHK.

• the second intersection (apart from X110) of the circumcircle and the circle OGX110, isogonal
conjugate of X542, point at infinity of the Fermat line i.e. the line through the Fermat points
X13, X14.
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Figure 4.8: K072 a Van Rees focal through G, O, H, K

Its equation is :

∑

cyclic

(b2 − c2)(b4 + c4 − a4 − b2c2)x (c2y2 + b2z2)

−(b2 − c2)(c2 − a2)(a2 − b2)(a2 + b2 + c2) xyz = 0

4.3.5 K103 parallel trilinear polars circular pK
Following the remark in §1.4.2, it is easy to see that there exists only one circular

pK locus of point M such that the trilinear polars of M and its Ω-isoconjugate M∗ are
parallel. The pivot and the pole are X67, isotomic conjugate of the Droussent pivot X316.
Its equation is : ∑

cyclic

(b4 + c4 − a4 − b2c2)x2 (y − z) = 0

This cubic passes through G, X67, X141, X524 and is tangent at A,B,C to the medians.
Its real asymptote is parallel to GK.
The ”last” intersection with the circumcircle is the point :

[
1

(b2 + c2)(b4 + c4 − a4 − b2c2)

]

The X67-isoconjugate X∗
524 of X524 and the tangential G̃ of G are other simple points on

the curve. Their coordinates are :

X∗
524 =

[
1

(b2 + c2 − 2a2)(b4 + c4 − a4 − b2c2)

]

and
G̃ =

[
b4 + c4 − 3a4 + a2b2 + a2c2 − b2c2

]
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4.3.6 K091 the isotomic focal nK
We apply the results found in §4.2.2 when Ω = G.

We find that all isotomic circular nK form a pencil and pass through X99 (Steiner point)
and X523 : the real asymptote is perpendicular to the Euler line. The root lies on the
line GtK and the singular focus on the line OX67.
The most remarkable is the one with focusX67 since it is the only focal of the pencil and is
closely related to the Droussent cubic, X67 being the isotomic conjugate of the Droussent
pivot X316, those two points lying on the curve. See figure 4.9. The perpendicular at
X99 to the Euler line intersects the line X67X316 at the isotomic conjugate of the point
where the cubic meets its asymptote. Those two points are unknown in [38, 39].
Its root is :

(a2 + b2 + c2)X76 + 2(4SASBSC + a2b2c2)X2 = [pa : pb : pc]

where X76 = tK = [b2c2] and X2 = [1]. This cubic has equation :

∑

cyclic

pax(y
2 + z2)− 2


∑

cyclic

a4(2b2 + 2c2 − a2)


xyz = 0

A
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X99

asymptote

X
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Figure 4.9: K091 the isotomic focal nK and the Droussent cubic

4.4 Self-inverse circular isocubics in the circumcircle or

pK◦(P )

4.4.1 Generalities

We know (see [5], tome 3, p.88 for example) that an inversion transforms a circular
cubic into a bicircular quartic when the pole Π of the inversion is not on the curve and
into another circular cubic passing through Π when the pole is on the curve.
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In this paragraph, we seek isocubics (denoted by K◦) invariant under inversion with
respect to the circumcircle which we call inversible cubics. Following [5] again, we
find that such a cubic must pass through O and the polar conic of its intersection with
its real asymptote must pass through O too. Now, since A, B, C are invariant under
inversion, the tangents at these points must pass through O and any requested cubic is
member of the pencil of cubics through A, B, C, O, the two circular points at infinity
with tangents at A, B, C through O. This shows that such a cubic must be a pK with
pivot P on the circumcircle and will now be denoted by pK◦(P ).
With P = (p : q : r) on the circumcircle, this cubic has equation :

∑

cyclic

qr x2 (c2SCy − b2SBz) = 0

This cubic is invariant under the isoconjugation which swaps P and O, whose pole Ω is
on the circumconic with perspector X184.

16 This circumconic intersects the circumcircle
at A, B, C and X112. For any point P , the line PΩ passes through X112.
Let us now denote by Pa, Pb, Pc the vertices of the cevian triangle of P . Those three
points are obviously on the cubic which is now entirely determined with at least ten of
its points : A, B, C, O, P , Pa, Pb, Pc and the two circular points at infinity.
Moreover, the curve is invariant under three other inversions with poles Pa, Pb, Pc swap-
ping A and P , B and P , C and P respectively.
Taking two isoconjugates M and M∗ on pK◦(P ), the points iM and iM∗ lie on pK◦(P )
and the line iM iM∗ passes through a fixed point E of pK◦(P ). This point E is :

• gcP ,

• the point where the parallel at P to the real asymptote A intersects pK◦(P ),

• the point at which the lines A iPa, B iPb, C iPc concur on pK◦(P ).

From this, we see that the tangents at O, Pa, Pb, Pc are parallel to A (and to PE)
and that the tangents at iPa, iPb, iPc concur at X which is the point where pK◦(P ) and
A meet. 17 We notice that X is the isoconjugate of the inverse of E.
The singular focus F of pK◦(P ) is the point where the normals to pK◦(P ) at iPa, iPb,
iPc concur. When P sweeps the circumcircle out, the locus of F is the circumcircle of
the tangential triangle centered at X26 on the Euler line. The circle with diameter XF
passes through iPa, iPb, iPc : it is the 9-point circle of triangle PaPbPc.
According to known properties of circular cubics, the envelope of the perpendicular
bisector of M iM is a parabola with focus at F and directrix the parallel to A which is

the image of A under the
−−→
OF -translation. Thus, the cubic is the envelope of bitangent

circles centered on the parabola and orthogonal to the circumcircle, the contacts of the
circle being two inverse points M and iM .
At last, let us remark that pK◦(P ) is a focal cubic if and only if P is a reflection of H in
one sideline of ABC. The singular focus is the inverse of the foot of the corresponding
altitude.

4.4.2 Construction of a pK◦(P )

Let us first summarize the study above : for any point P on the circumcircle, the
triangle PaPbPc formed by its traces has orthocenter O and the feet of the altitudes are

16X184 = gtO.
17Remember that the tangents at M and iM are symmetric about the perpendicular bisector of M iM .



J.-P. Ehrmann and B. Gibert 89

their inverses iPa, iPb, iPc.
E = gcP is the point on the curve such that its isoconjugate E∗ lies on L∞ : in other
words, the real asymptote is parallel to the line PE.
Let X be the isoconjugate of iE in the isoconjugation that swaps P and O : X is the
point where the cubic meets its real asymptote and the antipode F of X on the circle
iPaiPbiPc is the singular focus.
For any point ω on the perpendicular at O to PE, the circle centered at ω passing
through O intersects the perpendicular at X to ωF at two points on the cubic.

4.4.3 Several examples of pK◦(P )

• K114 = pK◦(X74) is particularly interesting since it belongs to the pencil of cir-
cular cubics generated by the Neuberg cubic and the cubic Ki we met in §4.3.1.
Their nine common points are A, B, C, O, X15, X16, X74 and the circular points
at infinity. The point E is here gX113. See figure 4.10.

A

B C

X74

asymptote

X H

O
X15

X16

Neuberg cubic

Ki cubic

Figure 4.10: K114 = pK◦(X74), Ki and the Neuberg cubic

• K112 = pK◦(X1141) – where X1141 = E368 denotes the second intersection of the
line through X5 and X110 and the circumcircle – is probably the most remarkable
cubic of this type : its nine common points with the Neuberg cubic are A, B, C, O,
X13, X14, E389 = X1157

18 and the circular points at infinity. It passes also through
X54,X96,X265,X539 (at infinity), gX128 and the inverses of X13,X14,X96,X265 not
mentioned in [38, 39]. See figure 4.11.

• K113 = pK◦(E591) – where E591 = tX858 = X2373
19 – has nine points in common

with the Droussent cubic : A, B, C, O, G, X69, X524, E591 and the circular points
at infinity. gX858 (on the Jerabek hyperbola) and iX69 lie on the cubic as well.
See figure 4.12.

18E389 =igX5.
19X858 is the intersection of the Euler and de Longchamps lines
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Figure 4.11: K112 = pK◦(E368) and the Neuberg cubic
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Figure 4.12: K113 = pK◦(E591) and the Droussent cubic



Chapter 5

K60 cubics : general theorems

5.1 Theorem 1 for K60 cubics

A cubic K is a K60 if and only if the polar conic of each point on L∞ is a
rectangular hyperbola.

Denote that this result is true whatever the cubic is circumscribed or not.

An immediate consequence :

Since all polar conics of the points on L∞ belong to the same pencil, we only need
to check that two of them are rectangular hyperbolas and it is convenient to choose the
points at infinity of ABC sidelines. In this case, the equations of the three polar conics
are : F ′

x = F ′
y , F ′

y = F ′
z , F ′

z = F ′
x which shows their great simplicity for a practical

usage.

Proof of Theorem 1 :

• Taking an orthonormal cartesian coordinates system, the axis of y being directed
by one of the asymptotic directions of the cubic, let us denote by u = ∞, v, w the
slopes (v,w not necessarily real) of those asymptotic directions. Since all polar
conics of the points of L∞ are in a pencil, those conics are rectangular hyperbolas
if and only if the polar conics of the points at infinity of the cubic are themselves
rectangular hyperbolas.

Let us consider now two complex numbers v,w and let U = 1
2
(v + w), V = 2w −

v,W = 2v −w. If u = ∞, we have :

(v,w, u, U) = (w, u, v, V ) = (u, v, w,W ) = −1

which means that (u,U), (v, V ), (w,W ) are the slopes of the asymptotic directions
of the polar conics of the points at infinity of the cubic. Those three conics are
rectangular hyperbolas if and only if :

(i,−i, u, U) = (i,−i, v, V ) = (i,−i, w,W ) = −1

⇐⇒ v +w = 2vw − v2 + 1 = 2vw − w2 + 1 = 0 ⇐⇒ v = −w = ± 1√
3

which is equivalent to the fact that the cubic is K60.

91
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• If three distinct points of a line ℓ have their polar lines concurring at a pointMo, the
polar conic of Mo must pass through those three points and therefore is degenerate
into two lines, one of them being ℓ. Hence, the polar line of any point of ℓ passes
through Mo.

Now, let K be a circumcubic having three distinct real asymptotes. Taking ℓ = L∞,
it is clear that its asymptotes concur at Mo if and only if the polar lines of any
three distinct points on it (and in particular the points at infinity of AB,BC,CA
) concur at Mo.

Remark :

The conic with equation Axx
2+Ayy

2+Azz
2+Bxyz+Byzx+Bzxy = 0 is a rectangular

hyperbola if and only if Axa
2 +Ayb

2 +Azc
2 = BxSA +BySB +BzSC .

5.2 Theorem 2 for K+
60 cubics

A cubic is a K+
60 if and only if the polar conic of each point of the plane is

a rectangular hyperbola.

Proof of Theorem 2 :

• If the cubic is a K+
60, its asymptotes concur at Mo whose polar conic degenerates

into two lines, one of them being L∞ . The polar conic of any point M belongs to
the pencil of conics generated by the polar conics of Mo and of the point at infinity
of the line MMo. Hence, the polar conics of M and of the point at infinity of the
line MMo have the same points at infinity which shows the former is a rectangular
hyperbola since the latter is already one.

• If the polar conics of all points in the plane are rectangular hyperbolas, the cubic
is K60. Mo being the common point of two asymptotes, the polar conic CMo of Mo

goes through the corresponding points at infinity. Since the asymptotes make 60◦

angle, CMo cannot be a proper rectangular hyperbola : it degenerates and contains
L∞ , thus the third asymptote must pass through Mo.

Immediate consequences :

• The polar conics of all points of the plane form a net of conics. From this and since
the knowledge of three non collinear points having rectangular hyperbolas as polar
conics entails that the polar conic of any point is a rectangular hyperbola, we only
need to find three such points and it is convenient to choose the vertices of ABC.
In this case, the equations of those polar conics are : F ′

x = 0, F ′
y = 0, F ′

z = 0.

• Hence a K60 is a K+
60 if and only if there exists one point not lying on L∞ whose

polar conic is a rectangular hyperbola.

• We have seen that a K60 is a K+
60 if and only if the polar lines of the points at

infinity of AB,BC,CA concur and is K++
60 if and only if they concur on the cubic.

The common point of the three asymptotes of a K+
60 is the intersection of the

diameters of the cubic (see §2.1.2) i.e. the intersection of the polar lines of two
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points on L∞ . Once again, it will be convenient to choose two points such as
Pc(1 : −1 : 0) and Pb(1 : 0 : −1) on ABC sidelines and solve the following system :





xF ′
x(Pc) + yF ′

y(Pc) + zF ′
z(Pc) = 0

xF ′
x(Pb) + yF ′

y(Pb) + zF ′
z(Pb) = 0

Remark :

Another technique would be to find the center of the poloconic of L∞ which is a
circle inscribed in the equilateral triangle formed by the asymptotes (see §§2.3.4 and
5.1). Although the computation is often very tedious, this method gives the center of
this triangle for any K60 and an equation of the circle.

5.3 Properties of K+
60 cubics

These curves are called “harmonic curves” i.e. curves whose Laplacian identically van-
ishes. They are sometimes called “stellöıdes” (Lucas), “potential curves” (Coolidge, Kas-
ner), “orthic curves” or “apolar curves” (Brooks), “équilatères” (Serret), “rhizic curves”
(Walton). The McCay cubic K003 is probably the most famous harmonic cubic.

A magnetostatic interpretation is given at the end of this chapter.
The three following chapters are devoted to K+

60 isocubics i.e. pK+
60 and nK+

60 with
some further information for unicursal cK+

60.

5.3.1 Barycentric Laplacian of a curve

In the plane of the usual reference triangle ABC with sidelengths a, b, c, we consider
a curve of degree n (n > 0) with barycentric equation F (x, y, z) = 0. If this same
plane is defined by an arbitrary orthonormal cartesian system of coordinates (X,Y ), the
curve has an equation of the form G(X,Y ) = 0 and the vertices of ABC are A(XA, YA),
B(XB , YB), C(XC , YC).

The correspondence between these two systems of coordinates is given by :

x =

∣∣∣∣
XB −X XC −X
YB − Y YC − Y

∣∣∣∣ ; y =

∣∣∣∣
XC −X XA −X
YC − Y YA − Y

∣∣∣∣ ; z =

∣∣∣∣
XA −X XB −X
YA − Y YB − Y

∣∣∣∣ (∗)

and we shall provisionally write x = a1X + a2Y + a3, etc, in order to simplify our
calculations.

In this first paragraph, our main concern is to give a barycentric expression of the
Laplacian of F .

In cartesian coordinates, the Laplacian of G is defined by

∆G =
∂2G

∂X2
+

∂2G

∂Y 2
.

Since
∂G

∂X
= a1

∂F

∂x
+ b1

∂F

∂y
+ c1

∂F

∂z
,

we have

∂2G

∂X2
= a1U + b1V + c1W,
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where

U = a1
∂2F

∂x2
+ b1

∂2F

∂x∂y
+ c1

∂2F

∂x∂z
, V and W likewise,

thus

∂2G

∂X2
=

∑

cyclic

(
a21

∂2F

∂x2
+ 2b1c1

∂2F

∂y∂z

)
,

and similarly

∂2G

∂Y 2
=

∑

cyclic

(
a22

∂2F

∂x2
+ 2b2c2

∂2F

∂y∂z

)
.

It follows that

∆G =
∑

cyclic

(a21 + a22)
∂2F

∂x2
+ 2(b1c1 + b2c2)

∂2F

∂y∂z
.

From the equations (*) above we obtain

a21 + a22 = (YB − YC)
2 + (XC −XB)

2 = BC2 = a2,

and

b1c1 + b2c2 = (YC − YA)(YA − YB) + (XA −XC)(XB −XA)

= −−−→
AB.

−→
AC = −1

2
(b2 + c2 − a2) = −SA,

hence finally

∆G =
∑

cyclic

(
a2

∂2F

∂x2
− 2 SA

∂2F

∂y∂z

)
=

∑

cyclic

SA

(
∂2F

∂y2
+

∂2F

∂z2
− 2

∂2F

∂y∂z

)
,

which is called the barycentric Laplacian ∆F of F .

5.3.2 Laplacian of some lower degree curves

1. When the curve is a straight line (n = 1), ∆F is obviously null hence a line is
always a (trivial) harmonic curve.

2. When the curve is a conic (n = 2) with barycentric equation
∑

cyclic

(
α1 x

2 + β1 yz
)
= 0,

the Laplacian becomes

∆F = 2
∑

cyclic

(
a2 α1 − SA β1

)
.

It follows that ∆F = 0 if and only if the conic is a rectangular hyperbola.

In other words, a conic is a harmonic curve if and only if it is a rectangular hyper-
bola.
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3. When the curve is a cubic (n = 3), the locus of point P such that ∆F (P ) = 0 is
generally a line called the “orthic line” of the cubic. This is the locus of point P
whose polar conic with respect to the cubic is a rectangular hyperbola. It is also
the mixed polar line of the circular points at infinity with respect to the cubic.

If the polar conic of any point of the plane is a rectangular hyperbola then the
cubic is harmonic and it is a K+

60.

5.3.3 General harmonic curves or stelloids

A curve Sn of degree n > 1 is said to be a harmonic curve (or a stelloid or an orthic
curve) if and only if its Laplacian identically vanishes i.e. ∆F (P ) = 0 for any point P .

Recall that a conic is harmonic if and only if it is a rectangular hyperbola.
From [4, 8, 37, 43], we have the following properties :

1. The polar curve of any order of any point with respect to Sn is also a harmonic
curve. In particular, the polar conic of any point P with respect to Sn is a rectan-
gular hyperbola.

2. Sn is apolar with respect to the circular points at infinity J1, J2. This means that
the polar curve of any degree m of J1 degenerates into m lines passing through J2
and conversely.

3. Sn has n real concurring asymptotes and the angle between two consecutive asymp-
totes is π/n.

4. The point of concurrence X of these n asymptotes is called the “radial center”
(“centre de rayonnement” in [27]) of Sn. It is the isobarycenter (or centroid) of the
intersections M1,M2, ...,Mn of any line through X with the curve. In other words,
the sum of the algebraic distances from X to these n points is null. X usually does
not lie on Sn.

5. X is also the isobarycenter of all the points on the curve where the tangents have
a same arbitrary direction.

6. The hessian of a harmonic curve is a circular curve passing through X. The muti-
plicity of each circular points at infinity is (n− 2) when the degree of Sn is n > 2.

7. Any Sn is the locus of point M such that the sum of the n angles formed by the
lines passing through M and n suitably chosen points M1,M2, . . . ,Mn on the curve
with an arbitrary direction is constant modulo π. These points Mi form a group
of n associated pivots and there are infinitely many groups of n associated pivots
on the curve.

If M1 is a given point on Sn, each isotropic line through M1 meets Sn again at
(n − 1) points. The (n − 1)2 intersections of a line through J2 and one point on
M1J1 with a line through J1 and one point on M1J2 give (n− 1) real points which
are the remaining pivots on Sn. The other (n−1)(n−2) intersections are imaginary.
See [27].

These curves are in many ways analogous to rectangular hyperbolas and may be seen
as rectangular hyperbolas of higher degree.
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5.3.4 Isogonal transform of a circum-stelloid

Suppose that Sn is a circum-stelloid of degree n > 1. When A, B, C are not multiple
points on the curve, its isogonal transform S∗

n is a circum-curve of degree 2n − 3.
Since Sn meets the line at infinity at n real distinct points, S∗

n meets the circumcircle
(O) at 4n − 6 points among them the n vertices of a regular polygon and then the
remaining 3(n− 2) points must be A, B, C each with multiplicity n− 2. It follows that
S∗
n must meet each sideline of ABC again at one and only one point (which is therefore

always real).

5.3.5 Harmonic cubics or K+
60

A harmonic cubic S3 is defined by a specific orientation with respect to a group of
three pivots (in [27]) or a group of three roots (“racines” in [42]) or a triad on the curve
(in [6]).

S3 has three real concurring asymptotes making π/3 = 60◦ angles with one another
and conversely, any cubic with this property is a S3 (see [27], VI).

The circumcircle of any group of three pivots meets the cubic at three other points
which are the vertices of an equilateral triangle.

There are quite many identified K+
60 in [29]. See the annexe at the end. Among

them, we find the McCay cubic K003, the Kjp cubic K024, the third Musselman cubic
K028, etc. Most of them are circumcubics but this is absolutely not a necessity, see
K077, K078, K100, K258 for instance.

Some of these cubics are K++
60 i.e. cubics with asymptotes concurring at X on the

curve and thus they are central cubics. This is the case of K026 (X = X5), K080
(X = O), K213 (X = G), K525 (X = H), etc. Note that the hessian of such cubic is
always a central focal cubic with focus X.

When a group of pivots is formed by a double point P and another point Q, the
cubic has a node at this double point with perpendicular nodal tangents. See K028
(X = X381) for example. It follows that all the circles passing through P and Q meet
the cubic at the vertices of an equilateral triangle.

Obviously, if the three pivots coincide then the cubic decomposes into three lines
concurrent at this point and forming a “compass rose” (“rose des vents” or R3 in [27]).

5.3.6 Harmonic cubics with pivots A, B, C

We illustrate some of the properties above with the circumscribed cubics S3 having
the points A, B, C as a group of associated pivots hence for which the radial center X
is G.

Any such cubic is a member of the pencil of cubics generated by the McCay cubic
K003 and the Kjp cubic K024. See Table 22 in [29]. Since this pencil is stable under
isogonality, any cubic meets the circumcircle (O) again at the vertices of an equilateral
triangle. All these cubics contain A, B, C and six other imaginary points, two by two
isogonal conjugate, on the perpendicular bisectors of ABC. These six points are called
the “antipoints” of A, B, C by Cayley and Salmon. Two points and two corresponding
antipoints may be regarded as the four foci of a same ellipse.

This pencil contains one and only one cubic S3(P ) passing through a given point P
which is not one of the points A, B, C and thus is characterized by a specific orientation
θ.

It follows that S3(P ) is
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• the locus of point M such that (AP,AM) + (BP,BM) + (CP,CM) = 0 (mod.π),

• equivalently, the locus of point M such that (AM,L) + (BM,L) + (CM,L) = θ
(mod.π), where L is any arbitrary line.

Construction of S3(P ) when P (or θ) is given

Let H(P ) be the rectangular hyperbola with center the midpoint of BC, passing
through B, C, P . This meets the circumcircle (O) of triangle ABC again at two points
lying on a line L passing through O which is parallel to the polar line of O in H(P ).

The orientation θ of the stelloid is then defined by the angle (L, AP ∗) where P ∗ is
the isogonal conjugate of P .

The construction of the cubic is obtained through the rotation about A of two variable
lines D, Dθ passing through A and making the angle θ. Construct

1. the isogonal transform D∗
θ of Dθ,

2. the parallel at O to D meeting (O) at M1, M2,

3. the rectangular hyperbola passing through B, C, M1, M2,

4. its two intersections with D∗
θ which are two points on the cubic.

Note that the intersection N of D∗
θ and the line M1M2 lies on the rectangular hyper-

bola passing through A, O and the three common points of the cubic with (O). These
are the vertices of an equilateral triangle.

Construction of the two pivots P2, P3 associated with P on S3(P )

Let P ′ be the complement of P and let E(P ) be the ellipse passing through P ′ which
is confocal with the inscribed Steiner ellipse of ABC with real foci F1, F2. Draw

1. the tangent at P ′ to E(P ) i.e. the external bisector of the angle (P ′F1, P
′F2),

2. the two tangents from P to E(P ) intersecting the previous tangent at the requested
points P2, P3. See figure 5.1.

Properties of S3(P )

• There are infinitely many groups of pivots on S3(P ) among them A,B,C. The
centroid of any group of pivots is G.

• Any line passing through G meets the cubic S3(P ) at three points whose centroid
is G.

• The circumcircle of any group of pivots meets the cubic again at three points which
are the vertices of an equilateral triangle. Thus, any S3(P ) contains infinitely many
inscribed equilateral triangles.
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A

B C

G

S3(P)

P’

P

P2

P3

F1

F2

E(P)

Figure 5.1: Construction of the two pivots P2, P3 on S3(P )

• F1, F2 are the fixed points of the involution that carries any point of the plane to
the center of its polar conic in the cubic. In other words and following Lucas in
[42], these are the central points of any group of pivots on S3(P ).1 This means that
if P1, P2, P3 are three pivots of a same group then

−−→
P1P

(P1P )2
+

−−→
P2P

(P2P )2
+

−−→
P3P

(P3P )2
=

−→
0 ⇐⇒ P = F1 or P = F2

• When P is not F1 nor F2, let

−−−→
E(P ) =

−−→
P1P

(P1P )2
+

−−→
P2P

(P2P )2
+

−−→
P3P

(P3P )2
6= −→

0 .

Following [42], p.6, the line P,
−−−→
E(P ) is the tangent at P to S3(P ).

• Consequently, the inscribed Steiner ellipse of any triangle whose vertices are three
pivots of a same group has its real foci at F1, F2. Hence these three pivots lie on
a same ellipse with center G whose foci are the anticomplements of F1, F2.

• There are two nodal S3(P ) obtained when P is one of two foci F1, F2 and then the
nodal tangents are obviously perpendicular. Each cubic is the isogonal transform
of the other. In this case, the two groups of pivots consist in one focus counted
twice and its anticomplement (which is a focus of the Steiner ellipse).

Hessian of S3(P )

1In the complex plane, if the affixes of A, B, C are α, β, γ then the affixes of F1, F2 are the roots of
the derivative of the polynomial (z − α)(z − β)(z − γ).
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The hessian of any S3(P ) is a focal cubic with focus G passing through the isodynamic
points X15 and X16. This hessian meets the line at infinity at a real point whose polar
conic in S3 is the union of the axes of the Steiner inscribed ellipse.

Since the cubics S3(P ) belong to the pencil generated by K003 and K024 their
hessians belong to the pencil of focal cubics generated by K048 and K193 which also
contains K508.

Figure 5.2 shows the McCay cubic K003 with its hessian K048 and Figure 5.3
shows the Kjp cubic K024 and with hessian K193.

A

B C

G

K003

X16

O X15

X351

X110

X111

K048

Parry circle

Figure 5.2: The McCay cubic K003 and its hessian K048

All these hessian cubics contain their singular focus G, the isodynamic points X15,
X16, the circular points at infinity with tangents passing through G, two imaginary
conjugate points which are the common points of (O) and the Lemoine axis, two other
remaining points on (O) and on a line passing through X23. Their orthic lines pass
through X187 hence their real asymptotes pass through the reflection S of G about X187.
Each hessian cubic meets its real asymptote again at a point lying on a rectangular
hyperbolaH with center X187, with asymptotes parallel to those of the Kiepert hyperbola
(or to the axes of the Steiner ellipse), passing through G, X15, X16, X98, X99, X385.

Figure 5.4 shows several hessian cubics of the pencil namely K048, K193 and
K508.

Naturally, each cubic S3(P ) which is not unicursal meets its hessian at their nine
common inflexion points and three of them are real (and collinear). These inflexion
points lie on a bicircular sextic with two real asymptotes parallel to the axes of the
Steiner ellipse and passing through the reflection of X187 about G. This sextic contains
G, X15, X16, the imaginary conjugate points cited above and the four foci of the Steiner
inscribed ellipse which are nodes on the curve. It also passes through the common points
of (O) and the Thomson cubic K002.

Figure 5.5 shows this sextic, the McCay cubic K003 and its hessian K048.
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A

B C

G

K024

X16

X15
Ωa

K193

Lemoine

axis

Ωb

Ωc

Figure 5.3: The Kjp cubic K024 and its hessian K193

A

B C

G

S

X98

K048

O

X15

X187

X476

X16

X99

H

K193

K508

Figure 5.4: Hessian cubics of the stelloids S3(P )
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A

B

C

G

K048

X15
F2

F1

X16

K003

Figure 5.5: The sextic together with the McCay cubic K003 and its hessian K048

5.3.7 Harmonic circumcubics

A harmonic circumcubic is a harmonic cubic passing through A, B, C which is
obviously the case when the three pivots of a group are precisely A, B, C.

Suppose that S3 is a harmonic cubic with group of pivots P1, P2, P3 distinct of A, B,
C. This is the locus of point M such that (P1M,L)+ (P2M,L)+ (P3M,L) = θ (mod.π),
where θ is a given orientation and L any arbitrary line.

According to the previous paragraph, when P1, P2, P3 are the vertices of a proper
triangle the cubic S3 must be a member of the pencil of cubics generated by the McCay
cubic and the Kjp cubic of the triangle P1P2P3. It immediately follows that there is
generally no such cubic passing simultaneously through A, B, C.

Harmonic cubics with pivots H, P , P ∗

This configuration always gives a harmonic circumcubic with asymptotes parallel to
those of the McCay cubic K003 and concurring at the centroid X of triangle HPP ∗.
This cubic always meets the circumcircle (O) at the same points as the isogonal pivotal
cubic with pivot the homothetic of X under h(X5, 3). This pivot lies on the harmonic
cubic.

Several examples are K028 (P = X3, P
∗ = X4), K516 (P = Ω1, P

∗ = Ω2, Brocard
points), K358 (P = F1, P

∗ = F2). See Figure 5.6.

Harmonic nodal circumcubics

Let P = P1 = P2 be a “double” pivot and let Q = P3 be another point. In general,
there is one and only one harmonic circumcubic with node at P .

For example,
– with P = X4 we have Q = X3 and the cubic is K028,
– with P = X5 we have Q = X143 and the cubic is K054, a generalized Lemoine

cubic.
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A

B

C

HX381

O

pK(X6, X381)

F1
F2

G

Figure 5.6: The cubic K358

Note that the cubic degenerates when P and Q coincide at one of the Fermat points
X13 and X14.

A special case is obtained when P is X80 (or one of its extraversions). Any point
Q on the circumcircle gives a harmonic circumcubic with node at X80 and all these
cubics form a pencil. In particular, when Q = X2222 the cubic is K230, a conico-pivotal
cubic. Naturally, the point of concurrence of the asymptotes of all these cubics lies on
the homothetic of the circumcircle under the homothety h(X80, 1/3). Note that all the
cubics pass through two fixed points O1, O2 on the circumcircle and on a line through
X900.

Figure 5.7 shows one of these nodal cubics namely that with asymptotes parallel to
those of the McCay cubic K003. This contains X4 and X953.

Harmonic circumcubics with given radial center X

All these harmonic circumcubics form a pencil hence there is one and only one central
harmonic circumcubic with center X.

5.3.8 A magnetostatic interpretation

Consider three parallel electric wires (supposed of infinite length) carrying a same
electric current (same intensity, same direction). These wires meet a perpendicular plane
(containing the reference triangle ABC) at P1, P2, P3 and create a magnetostatic field.

Up to a multiplicative constant, the field at P is of the form

−−−→
E(P ) =

−−→
P1P

(P1P )2
+

−−→
P2P

(P2P )2
+

−−→
P3P

(P3P )2

as seen above. It follows that the field lines are precisely our cubics K+
60 and the

equipotential curves are cassinian curves of degree 6. They are orthogonal to the cubics
K+

60.
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A

B

C

H

X80X953

K003

O1

O2

Figure 5.7: A nodal cubic with node X80 together with the McCay cubic K003

Naturally, it is convenient to choose A, B, C for P1, P2, P3 in which case the field
lines are the cubics of the pencil generated by the McCay and Kjp cubics. It is then
(physically) clear that any two lines cannot meet at other points than A, B, C and the
angles made by these two lines at A, B, C must be the same. In particular, the McCay
and Kjp cubics are orthogonal at these points. See Figure 5.8 and Figure 5.9.
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A

B C

G

K003

F1

K024

F2

K024

K003 K024

Figure 5.8: McCay cubic K003, Kjp cubic K024 and field lines

A

B C

G

K003

F1

K024

F2

Figure 5.9: McCay cubic K003, Kjp cubic K024 and cassinian curves
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5.3.9 Annexe : list of harmonic cubics

The following tables gives a selection of stelloids or K+
60.

Notations :

X : intersection of the asymptotes

o : the cubic is a circumcubic

c : the cubic is a central cubic or a K++
60 whose center is X

n : the cubic is a nodal cubic

the red cubics are those with asymptotes parallel to those of the McCay cubic K003
i.e. perpendicular to the sidelines of the Morley triangle

the green cubics are those with asymptotes parallel to those of the Kjp cubic K024
i.e. parallel to the sidelines of the Morley triangle

Notes : in [29],

1. Table 22 gives cubics of the pencil generated by the McCay cubic K003 and the
Kjp cubic K024. These are the harmonic cubics having A, B, C as a group of
pivots hence their asymptotes concur at G.

2. CL006 is the class of pivotal harmonic cubics or pK+
60.

3. The pseudo-pivotal cubics psK are defined and studied in [30].

4. The sympivotal cubics spK are described in CL055 and CL056.
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Table 5.1: Stelloids or K+
60 (part 1)

cubic X o c n type centers on the curve

K003 X2 o pK X1, X3, X4, X1075, X1745, X3362

K024 X2 o nK0 none

K026 X5 o c psK X3, X4, X5

K028 X381 o n psK X3, X4, X8, X76, X847

K037 X476 o pK X30

K046a X618 o c pK X13, X616, X618

K046b X619 o c pK X14, X617, X619

K049 X51 o pK X4, X5, X52, X847

K054 midpoint of X5, X51 o n X4, X5, X143

K071 reflection of X51 in X5 o psK X4, X5, X20, X76

K077 X376 X1, X3, X20, X170, X194

K078
−−→
OX = 1/9

−−→
OH X1, X2, X3, X165

K080 X3 o c X3, X4, X20, X1670, X1671

K094 X599 o nK none

K097 X79 ×X1654 o pK X1, X79

K100 X3 c X1, X3, X40, X1670, X1671

K115 X2X511 ∩X6X22 o K0 X4

K139 X1989 ÷X30 o c nK X30

K205 X2X249 ∩X111X265 o c nK none

K213 X2 o c nK X2

K230 E597 o n cK X80, X2222

K258 X549 n X1, X3, X5, X39, X2140

K268 X2X511 ∩X3X64 o K0 X4, X20, X140

K309
−−→
OX = 2/9

−−→
OH o X3, X4, X376, X1340, X1341

K358
−−→
OX = 5/9

−−→
OH o X3, X4, X381

K412
−−−→
X5X = 1/3

−−−−→
X5X51 o X2, X4, X5, X51, X262

K513
−−−−→
X187X = 1/3

−−−−−−→
X187X265 o X6, X15, X16, X74, X265, X3016

K514 X3X1506 ∩X20X32 o X4, X15, X16, X39

K515 X3258 o pK X30, X1138

K516 X262 o K0 X4, X3095

K525 X4 o c spK X3, X4, X382

K543
−−−−→
X107X = 1/3

−−−−−−→
X107X125 o pK none

K580 X568 o X4, X847

K581
−−→
OX = 4/9

−−→
OH o X2, X3, X4, X262

K582
−−→
KX = 1/3

−−−−→
KX381 o X2, X4, X6, X262

K594
−→
IX = 1/3

−→
IH o n X1, X4, X1482

K595
−−−→
X98X = 1/3

−−−−−→
X98X265 o n X74, X98, X265, X290, X671

K596
−−−→
X99X = 1/3

−−−−−→
X99X265 o n X74, X99, X265, X290

K597
−−−−→
X477X = 1/3

−−−−−−→
X477X265 o n X30, X74, X265, X477

K598 X6 none
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Table 5.2: Stelloids or K+
60 (part 2)

cubic X o c n type centers on the curve

K607 X1511∗ o c nK X30, X
∗
1511

K613
−−−→
X5X = 1/3

−−−−−→
X5X110 o nK X4, X110, X1113, X1114

K643 centroid of OHK o spK X4, X6, X4846

K665 X549 o X3, X4, X39, X550

K669
−−−→
X5X = 1/3

−−−−−→
X5X265 o nK X4, X74, X265

K670
−−−→
X5X = 1/3

−−−−→
X5X68 o psK X4, X26, X64, X68, X847

K708
−−−→
X4X = 2/3

−−−→
X4X6 o spK X4, X1344, X1345, X1351

K714 X3X107 ∩X5X53 o spK X4

K724 on line X3X125 o n psK X74, X265, X5961, X6344



Chapter 6

pK60 isocubics

6.1 A crucial point and a crucial cubic

• Let us denote by Po the point with barycentric coordinates

(po : qo : ro) =

(
1

4S2
A − b2c2

:
1

4S2
B − c2a2

:
1

4S2
C − a2b2

)

Po is the barycentric product of the Fermat points i.e. the pole of the isoconjugation
which swaps them. Also we have Po = gX323.

1 It is the intersection of the line
through the Fermat points X13 and X14 and the parallel to the Euler line at X50 =
gtX323. It lies on the circum-hyperbola through G and K and on the rectangular
circum-hyperbola through the midpoint of GH 2.

• Let K095 = Co be the pivotal circum-cubic with pivot Po which is invariant under
the conjugation

ϕo : M(x : y : z) 7→ M∗

(
a2po
x

:
b2qo
y

:
c2ro
z

)
∼ (a2poyz : b2qozx : c2roxy)

which swaps Po and K. See figure 6.1.

Its equation is ∑

cyclic

(4S2
A − b2c2)x2(b2z − c2y) = 0.

It passes through Po, K, X53 (symmedian point of the orthic triangle), X395, X396,
X2160, X2161, the common point Mo of the orthic axis and the line HK 3, Po/K
(a point on OK which is the tangential of K in Co).
The polar conic of K passes through A, B, C, G, K, Po which shows Co is tangent
to the symmedians at the vertices of ABC.

6.2 Main theorem for pK60

Theorem :

For a given Ω(p : q : r)−isoconjugation, there is in general one and only one
pK60. Moreover, this pK60 is a pK+

60 if and only if Ω lies on Co.
1Po is now X1989 in [39].
2This is X381 in [38, 39].
3This point is

[(
a2(b2 + c2 − 2a2) + (b2 − c2)2

)
/SA

]
. It is now X1990 in [39].

108
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K
X53X13

X14
X395

X396

Mo

Po

orthic
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polar conic

 of K

Fermat axis

Figure 6.1: The cubic Co or K095

The pivot is P (u : v : w) where

u = (4S2
A − b2c2)p(q + r − p)− 3(b4rp+ c4pq − a4qr),

the other coordinates v,w similarly.

Proof :

Starting from equation (1.1) in §1.3, theorem 1 in §5.1 used with two points on
L∞ such as Pc(1 : −1 : 0) and Pb(1 : 0 : −1) gives two linear equations in u, v, w. This
system has in general one solution that gives the pivot P (u : v : w) as above.

u, v, w being replaced in (1.1), theorem 2 in §5.2 shows that the cubic is a pK+
60 if

and only if Ω lies on Co.

A special case :

The system above does not have a unique solution if and only if the pole Ω is one of
the three points Ωa, Ωb, Ωc that are the only points for which there are infinitely many
pK60 with pole one of these points. They lie on a large number of curves (among them
Co) although they are not constructible with ruler and compass only. In particular, they
are the common points, apart Z = X5X1989 ∩X6X30, of the two conics passing through
Z and X5, X53, X216, X1989 for the former, X395, X396, X523, X3003 for the latter.

6.3 Corollaries

6.3.1 Corollary 1

Let us denote by Φ the mapping Ω(p : q : r) 7→ P (u : v : w) and by Ψ the mapping
P 7→ Ω.
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Φ has three singular points Ωa, Ωb, Ωc and Ψ has also three singular points Ua, Ub,
Uc on the Neuberg cubic and on many other curves. Hence, there are infinitely many
pK60 with pivot one of the points Ua, Ub, Uc. See §6.5.1 for more details.

We have :

p =
[
a2(a2 + b2 + c2)− 2(b2 − c2)2

]
u2 + 3a4vw

+
[
a2(2a2 + 2c2 − b2)− (b2 − c2)2

]
uv

+
[
a2(2a2 + 2b2 − c2)− (b2 − c2)2

]
uw,

= 16∆2u(2u+ v + w)

+ 3a2[2u(−SAu+ SBv + SCw)− (−a2vw + b2wu+ c2uv)].

the other two coordinates q, r similarly.
The second form clearly shows that Ω lies on the line passing through the pole of the

circular pivotal cubic with pivot P 4 and through the barycentric product of P and ccP .
In this case, the following statements are equivalent :

• pK is a pK60 with pole Ω and pivot P .

• P = Φ(Ω).

• Ω = Ψ(P ).

6.3.2 Corollary 2

Ψ maps the Neuberg cubic to the cubic Co i.e. any point P on the Neuberg cubic is
the pivot of a unique pK+

60 with the pole Ω chosen according to Corollary 1.
In other words, the following statements are equivalent :

• pK is a pK+
60 with pole Ω and pivot P .

• Ω ∈ Co .

• P is on the Neuberg cubic.

For example, the choice of O for P leads to Ω = K and we find the famous McCay cubic.
See [9] for details.

6.4 Constructions

6.4.1 Construction of P for a given Ω 6= K

We have seen in §4.2.1 that the pivot of a non-isogonal circular pivotal isocubic is

PΩ =
[
b2c2p(q + r − p)− (b4rp+ c4pq − a4qr)

]
,

this point not defined if and only if Ω = K.
Recall that PΩ is the reflection of SΩ (tripole of the line ΩK on the circumcircle of

ABC) about δΩ (trilinear polar of the Ω-isoconjugate of K).
Recall also (see §4.2.2) that the center of C∞ is cΩ = [p(q + r − p)], the G−Ceva

conjugate of P .

4Recall that this pole is the barycentric product of P and igP .
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Lemma 1 :

P,PΩ, cΩ are collinear. (this is obvious)

Lemma 2 :

Let us denote by Ω1 the isotomic conjugate of the Po-isoconjugate of cΩ and let Ω2

= agtgΩ. Their coordinates are :

Ω1 =
[
(4S2

A − b2c2)p(q + r − p)
]

and
Ω2 =

[
b4rp+ c4pq − a4qr

]

P,Ω1,Ω2 are collinear. (this is obvious too)
Since we know two lines containing P , the construction is possible although rather

complicated.

6.4.2 Construction of Ω when P is on the Neuberg cubic

Let us recall that Po = X1989 is the barycentric product of the Fermat points, that
Mo = X1990 is the intersection of the orthic axis and the line HK and that a pK60 with
pivot on the Neuberg cubic is always a pK+

60.
The rectangular circum-hyperbola H1 through Mo intersects the parallel at P to the

Euler line at X30 and U1.
5

The line HP intersects again the rectangular circum-hyperbola H2 through Po (and
the midpoint X381 of GH) at U2.

6

Then Ω = MoU1 ∩ PoU2. See figure 6.2.
In this case, the isopivot P ∗ is a point of the cubic K060, the inverse of the Neuberg

cubic in the circumcircle.

An alternative construction

The transformation f we met in §3.5.3 maps P on the Neuberg cubic K001 onto Ω
which lies on K095.

6.4.3 Construction of Ω when P is not on the Neuberg cubic

We first recall that Ω lies on the line passing through the two following points :
– the pole Ωc of the circular pivotal cubic with pivot P , barycentric product of P

and igP ,
– the barycentric product Ωp of P and ccP , pole of a pK+ with asymptotes concurring

at the barycentric product of ccP and ctP .
We wish to find another line that contains Ω and we will make use of the facts that

Ψ : P → Ω maps any point Q on the circle C(X20, 2R) to a point Y on the orthic axis
of ABC and that Ψ transforms the rectangular hyperbola H(P ) passing through O, Ua,
Ub, Uc and P into a line passing through the Lemoine point K of ABC. See §6.5.1 below
for further details about these points.

5The asymptotes of this rectangular circum-hyperbola H1 are perpendicular and parallel to the Euler
line. It is the isogonal conjugate of the line through O,X74, X110.

6This rectangular circum-hyperbola H2 is the isogonal conjugate of the line through O,X323.
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K095
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U2

Ω

H2Neuberg cubic

Figure 6.2: Construction of Ω when P is on the Neuberg cubic

• We first need to construct the center W of H(P ) but, since these points Ua, Ub, Uc

are not ruler and compass constructable, we use the pencil of rectangular hyper-
bolas F passing through O, Ua, Ub, Uc that obviously contains H(P ) and that is
generated by the two simple hyperbolas H1 and H2 :

– H1 contains O, X20, X399, X1147 with asymptotes parallel to those of the Jerabek
hyperbola, with center the image of X110 in the translation that maps H to the
nine point center X5,

– H2 contains O, X616, X617 with asymptotes parallel to those of the Kiepert
hyperbola, with center the image of X99 in the same translation. See figure 6.3.

If P is a point not lying on these two hyperbolas, the polar lines of P in H1, H2

meet at P ′ lying on the tangent at P to H(P ).

The conjugated diameters of the line PP ′ with respect to H1, H2 pass through the
centers of H1, H2 and meet at T on the nine point circle of F namely the circle
with radius R and center the midpoint X550 of O, X20. The second intersection
of the line TP with this latter circle is the center W of H(P ). The reflection of
O about W is the fourth point Q where H(P ) meets C(X20, 2R), the three other
points being Ua, Ub, Uc. See figure 6.4.

• Let now S be the midpoint of HQ (on the circumcircle (O) of ABC). The isogonal
conjugate of the trilinear pole of the perpendicular at O to the Simson line of S is
the requested point Y = Ψ(Q) on the orthic axis. This completes the construction
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H1

X20
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O

X74

X3098

X399

X550

X616

X617

Ub

Uc

H2

H(P)

C(X20,2R)

C(X550,R)

Figure 6.3: Pencil of hyperbolas H(P )

of Ω and thus that of the cubic.

Remark : H(P ) meets the Neuberg cubic K001 at O, Ua, Ub, Uc and two other (real
or not) points P1, P2 collinear with X74 since X74 is the coresidual of O, Ua, Ub, Uc in
this cubic. It follows that P1, P2 are X30−Ceva conjugated thus their midpoint lies on
(O) and their perpendicular bisector pass through X110.

6.5 A very special pencil of cubics

6.5.1 The points Ua, Ub, Uc

• Let us call Ga, Gb, Gc the vertices of the anticomplementary (or antimedial) trian-
gle.

Ha is the hyperbola through B,C,Ga, the reflection A′ of A about the sideline BC,
the reflection Ah of H about the second intersection of the altitude AH with the
circumcircle. The angle of each of its asymptotes with BC is 60◦. Hb and Hc are
defined similarly.

We can note that Ha,Hb and Hc are the images under Φ of the sidelines of triangle
ABC.

Ha,Hb and Hc have three points in common Ua, Ub, Uc lying on the circle centered
at L with radius 2R, passing through Ah, Bh, Ch. The orthocenter of triangle
UaUbUc is O and its centroid is a point on the Euler line of triangle ABC.
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Figure 6.4: Construction of H(P ) ∩ C(X20, 2R)

• We remark that the points Ua, Ub, Uc also lie on :

– the Neuberg cubic.

Their isogonal conjugates gUa, gUb, gUc, the midpoints Va, Vb, Vc of triangle
gUagUbgUc which are the complements of gUa, gUb, gUc and their isogonal
conjugates gVa, gVb, gVc also lie on the Neuberg cubic. This means that we
know the 9 points of the Neuberg cubic having their anticomplement on the
Neuberg cubic : O,X13,X14,X30, Va, Vb, Vc and the circular points at infinity.
The points gUa, gUb, gUc lie on the circle (O, 2R) passing through X399 and
the triangles ABC and gUagUbgUc share the same orthocenter, circumcenter
and centroid.)

– the only isotomic pK60 (see §6.6.2).
– the rectangular hyperbola HL through O,L = X20,X399, the reflection of H

about X110, having its asymptotes parallel to those of the Jerabek hyperbola.

– the rectangular hyperbola HH through O,H, the reflection of H about X107

(a point on the Neuberg cubic), having its asymptotes parallel to those of the
rectangular circum-hyperbola with center X122.

More generally, we remark that all the rectangular hyperbolas of the pencil of conics
passing through Ua, Ub, Uc and O are centered on the circle with center X550 and
radius R.
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6.5.2 A theorem

Now we consider the pencil F of cubics through the points A, B, C, Ga, Gb, Gc, Ua,
Ub, Uc.

For instance, the union of Ha and the line GbGc is a degenerate cubic of F .
We have the following theorem :

1. Each cubic of F is a K60.

2. The locus of the pivots of all pK60 with given asymptotic directions is the member
of F which has the same asymptotic directions.

3. There is only one K+
60 in F and, in fact, it is a K++

60 denoted by K++
O or K080. Its

center is O and the asymptotes are perpendicular to the sides of the (first) Morley
triangle. See figure 6.5.

Its equation is :

∑

cyclic

c2xy
[(
a2SC + b2(c2 − b2)

)
x−

(
b2SC + a2(c2 − a2)

)
y
]

+(a2 − b2)(b2 − c2)(c2 − a2)xyz = 0

A

B
C

H

O

Ua

Ga

L

Ub

GbUc

Gc

   Neuberg

 cubic

AO

BO
CO

HA

HC

HB

X74

Va

VbVc

E

C(L,2R)

Figure 6.5: K080 or K++
O and the Neuberg cubic

K++
O passes through O,H,L, the symmetrics HA,HB ,HC of H about A, B, C, the

symmetrics AO, BO, CO of A,B,C about O. The nine common points of K++
O and

the Neuberg cubic are A,B,C,H,Ua, Ub, Uc and O which is double.

6.5.3 K026 or K++
N the first Musselman cubic

The homothety hH,1/2 transforms K++
O into another K++

60 denoted by K++
N or K026.

Its center and inflexion point is N = X5 with an inflexional tangent passing through X51

(centroid of the orthic triangle). Its equation is :
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2(a2 − b2)(b2 − c2)(c2 − a2)xyz +
∑

cyclic

a2
[
(b2 − c2)2 − a2(b2 + c2)

]
yz(y − z) = 0

in which we recognize the coordinates
[
a2[(b2 − c2)2 − a2(b2 + c2)]

]
of X51.

The following points lie on it : O,H, the midpoints of ABC, of AH,BH,CH, of
HGa,HGb,HGc, of HUa,HUb,HUc (those three on the Napoleon cubic). The tangents
at A,B,C pass through X51 too.

A

B
C

O H
X5

Gc

Ga

Gb

Figure 6.6: K026 the first Musselman cubic

We know its six common points with the circumcircle, its six common points with
the nine-point circle, its nine common points with the Napoleon cubic.

This cubic is mentionned in [46] p.357 : if we denote by B1, B2, B3 the reflections of
A,B,C about a point P , by C1, C2, C3 the reflections of P about the sidelines of triangle
ABC, by D the common point of circles AB2B3, BB3B1, CB1B2 and by E the common
point of circles AC2C3, BC3C1, CC1C2 then D and E (points on the circumcircle) will
coincide if and only if P lies on K++

N .
K++

N can also be seen as the locus of centers of central isocubics whose asymptotes
are perpendicular to the sidelines of the first Morley triangle.

6.6 Some unusual pivotal cubics

6.6.1 The McCay family

The theorem seen above in §6.5 shows that each point on K++
O is the pivot of a pK60

having the same asymptotic directions than the McCay cubic which is obtained for the
points O as pivot and K as pole.

Since H is on K++
O and on the Neuberg cubic too, there is another remarkable pK+

60 :
its pivot is H, its pole is X53 (Lemoine point of the orthic triangle) and the asymptotes
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concur at X51 (centroid of the orthic triangle). This cubic is K049, the McCay cubic
for the orthic triangle. See figure 6.7. Its equation is :

∑

cyclic

[
(b2 − c2)2 − a2(b2 + c2)

]
yz (SBy − SCz) = 0

It is clear that the three points Ua, Ub, Uc are the pivots of three more pK+
60 denoted

by pK+
a , pK+

b and pK+
c .

A

B
C

X5

H

O

X51

Neuberg 

cubic

Napoleon

      cubic

    Kn 

cubic

Ha

Hc

Hb

Figure 6.7: K049 the McCay orthic cubic

Another notable pK60 is obtained when the pivot is L and the pole X216. This cubic
K096 passes through O and X5 (nine-point center).

6.6.2 K092 the isotomic pK60

There is one and only one isotomic pK60 : it is denoted by pKt. See figure 6.8.
Its pivot is Pt = [2(b4 + c4 − 2a4) + 2a2(b2 + c2)− b2c2] 7

The isotomic conjugate of Pt is one of the fixed points of the quadratic transformations
Φ and Ψ seen above.

Let us notice that the equilateral triangle formed with the three asymptotes is cen-
tered at O.

If we call Ut, Vt,Wt the isotomic conjugates of the points at infinity of the three
asymptotes (they are obviously on the Steiner circum-ellipse and on the cubic), the lines
through the Steiner point and Ut, Vt,Wt meet the circumcircle again at three points
U ′
t , V

′
t ,W

′
t which are on the asymptotes and are the vertices of an equilateral triangle.

We can remark that the second intersections (other than U ′
t , V

′
t ,W

′
t) of the asymptotes

with the circumcircle are the vertices of another equilateral triangle.

7[Paul Yiu] There are two lines that contain this point :
(1) The line through tK, parallel to the Euler line.
(2) The line joining the centroid to the inversive image of the symmedian point in the circumcircle,

point called X187 in [38, 39]
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X99

Steiner ellipse
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Figure 6.8: K092 or pKt the isotomic pK60

The points Ua, Ub, Uc we met above are on pKt. This means that pKt is the member
of F passing through G. According to theorem seen in §6.5, pKt is the locus of pivots of
all pK60 having the same asymptotic directions than pKt itself. It can be seen that pKt

is the only pK60 having this particularity.

6.6.3 K037 the Tixier equilateral cubic

When we take Po as pole of the isoconjugation, we find a very nice pK+
60 we shall call

the Tixier equilateral cubic. See figure 6.9.
Its pivot is X30 and the three asymptotes concur at X476 which is a point on the

circumcircle called Tixier point. (See [39] for details)
One of the asymptotes is the parallel at X476 to the Euler line and passes through

X74, the remaining two are easily obtained with 60◦ rotations about X476.
Its equation is :

∑

cyclic

[
(b2 − c2)2 + a2(b2 + c2 − 2a2)

]
x (ro y

2 − qo z
2) = 0

The intersection with the asymptote parallel to the Euler line is the Po-isoconjugate of
X30 which is the isogonal of the midpoint of OX110.

The nine common points with the Neuberg cubic are A,B,C, the feet of the parallels
to the Euler line at those vertices and finally X30 which is triple and we can remark the
two cubics share a common asymptote.

The common polar conic of X30 in these two cubics 8 is the rectangular hyperbola
through the in/excenters and through X5 with center X476. This means that any parallel

8Its equation is : ∑

cyclic

(b2 − c2)(4S2
A − b2c2)x2 = 0
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Figure 6.9: K037 Tixier equilateral cubic and Neuberg cubic

to the Euler line meets the Neuberg cubic at M1,M2 and the Tixier cubic at N1, N2 such
that the segments M1M2 and N1N2 have the same midpoint.

6.6.4 K046a and K046b the two Fermat cubics

Since there are only two points not on ABC sidelines – the Fermat points X13,X14 –
whose cevian lines make 60◦ angles with one another, there are only two non-degenerate
pK++

60 which we call the Fermat cubics :

• their pivots are the anticomplements X616,X617
9 of the Fermat points.

• the poles are the points X396 and X395
10 resp.

• the asymptotes concur on the cubic at the complements X618,X619 of the Fermat
points X13,X14 respectively. These complements are therefore centers of each cubic
and inflexion points. The inflexional tangents are the lines X618X396 and X619X395

respectively. The tangents at the points X13,X616 for the first, at X14,X617 for the
second are all parallel to the Euler line.

The asymptotes are the lines through the center of each cubic and the midpoints
of the sidelines of ABC.

6.6.5 K104 parallel trilinear polars pK60

Following the remark in §1.4.2, it is easy to see that there exists only one pK60 locus
of point M such that the trilinear polars of M and its Ω-isoconjugate M∗ are parallel.
See figure 6.11.

9These anticomplements are unusual points on the Neuberg cubic.
10X396 is the midpoint of X13, X15 and X395 is the midpoint of X14, X16. Those two points are on the

line GK.
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A

B C
X618

X619

Figure 6.10: K046a and K046b the two Fermat cubics

The pivot and the pole are the isotomic of the point Pt we met in §6.6.2. An equation
of the cubic is :

∑

cyclic

(4a4 − 2a2b2 − 2b4 − 2a2c2 + b2c2 − 2c4)x2(y − z) = 0

The triangle formed with the asymptotes is equilateral and centered at H.

A

B C

G

H

Figure 6.11: K104 parallel trilinear polars pK60
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6.7 A bicircular quartic

The locus of the intersection of the three asymptotes of all pK+
60 is a bicircular quartic

Qo. See figure 6.12. Its equation is too complicated to be given here.

A

B C

G

X476

W

V

U

X13

X14

X51

X618

X619

T

(C)

(C')

Figure 6.12: The bicircular quartic Qo or Q004

Qo passes through :

• the feet U , V , W of IP(Po).

• G, X51 (centroid of the orthic triangle) with an inflexional tangent at G which is
the line GX51.

• the Fermat points and their complements.

• the Tixier point X476 and its complement.

This quartic can be obtained by inverting a circular cubic in the following manner :
(C) is the circle centered at G through X51. This circle is tangent at X51 to IP(Po).

Let us call (k) the pivotal cubic with pivot the point at infinity of the parallel lines OK
and GX51 which is isogonal with respect to the triangle formed by the inversive images
U ′, V ′,W ′ 11 with respect to (C) of the points U, V,W . Qo is the inversive image of (k)
with respect to (C) which allows the construction.

Consequently, Qo passes through the inversive images of the in/excenters of triangle
U ′V ′W ′.

This circular cubic (k) is very special in the sense that its singular focus lies on its
asymptote. Hence, the line OK is perpendicular to one of the sides of the Morley triangle
of U ′V ′W ′.

11U ′, V ′,W ′ are three points on the circle with diameter GX51.



Chapter 7

nK60 isocubics

7.1 Main theorem for nK60

For a given Ω(p : q : r)-isoconjugation, let RΩ be the point with coordinates

[
p(4S2

A − b2c2) : q(4S2
B − c2a2) : r(4S2

C − a2b2)
]
,

namely the Ω−isoconjugate of Po = X1989.
There are only two possible situations :

• if RΩ 6= G ⇐⇒ Ω 6= Po then there is a pencil of nK60 all having the same
asymptotic directions and their root on the line GRΩ. Among them, there is one
and only one nK+

60.
1

• if RΩ = G ⇐⇒ Ω = Po then any point P of the plane is the root of a nK60.

This nK60 is a nK+
60 if and only if P is on the line

a2(4S2
A − b2c2)x+ b2(4S2

B − c2a2)y + c2(4S2
C − a2b2)z = 0

which is the image of the circumcircle under the Po-isoconjugation and, in fact, the
perpendicular bisector of OH.

In this case, the common point of the three asymptotes is on the circle Γo with
radius R/3 (R circumcircle radius) which is homothetic to the circumcircle of ABC
under h(X125,−1/3) or h(H ′, 1/3) where X125 is the center of the Jerabek hyper-
bola and H ′ = X265 = Po-isoconjugate of H.

Proof :

See §6.2 together with equation (2) in §1.3.

7.2 Isogonal nK60 cubics

In this paragraph, we take Ω = K and RΩ =
[
a2(4S2

A − b2c2)
]
which is X323 in

[38, 39]. The common asymptotic directions of all cubics are the sidelines of the (first)
Morley triangle. The root P is on the line GK.

1The pencil is generated by the two following cubics :
(1). one is degenerate into L∞ and the circumconic which is its isoconjugate (this cubic is not a proper

nK60)
(2). the other with root RΩ and parameter 0.

122
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When P = G the cubic is decomposed into the union of the circumcircle and L∞ .
All those cubics meet the circumcircle at A,B,C and three other points which are the
isogonal conjugates of the points at infinity of the Morley sidelines : those points are the
vertices of an equilateral triangle called circumtangential triangle in [38]. See also [23].
For all those cubics, the triangle formed with the asymptotes is centered at G. If t is the

real number such that
−−→
GP = t

−−→
GK, then the radius of the circumcircle of this triangle

is :
a2 + b2 + c2

9R

∣∣∣∣1−
1

t

∣∣∣∣

7.2.1 The Kjp cubic or K024

When P = K, we obtain the only nK+
60 of the pencil denoted by Kjp. See figure 7.1.

This is a nK0 with equation :
∑

cyclic

a2x(c2y2 + b2z2) = 0 or
∑

cyclic

(y + z)x2/a2 = 0

The asymptotes concur at G.

A

B C

G

Ωa

Ωb

Ωc

Lemoine axis

Figure 7.1: K024 or Kjp

Among other things, this cubic is the locus of point M such that :

1. the circle with diameter MgM is orthogonal to the circumcircle.

2. the pedal circle of M is orthogonal to the nine-point circle.

3. the center of the conic ABCMgM is collinear with M and gM (together with the
union of the six bisectors).

4. the pole of the line MgM in the conic ABCMgM lies on L∞ (See §1.5.2) i.e. the
tangents at M and gM to the conic ABCMgM are parallel. 2

2This is true for every nK0 with pole = root.
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5. the sum of line angles (BC,AM) + (CA,BM) + (AB,CM) = 0 (mod.π).

6. the Simson lines of Ma,Mb,Mc are concurrent, where Ma,Mb,Mc are the second
intersections of the cevian lines of M with the circumcircle i.e. the vertices of the
circumcevian triangle of M .

7. the lines AgM and MbMc (or equivalently BgM and McMa, CgM and MaMb)
are parallel.

8. the parallels at Ma,Mb,Mc to the sidelines BC, CA, AB respectively are concur-
rent.

9. the circumcevian triangles of M and gM are perspective (together with the union
of the six bisectors, the circumcircle and L∞ ).

This cubic passes through the centers of the three Apollonius circles, the tangents at
those points being concurrent at G. The tangents at A,B,C are parallel to the sidelines
of ABC.

7.2.2 K105 nK60 and perpendicular polar lines in the circumcircle

The locus of point M such that the polar lines (in the circumcircle) of M and
gM are perpendicular is the isogonal nK60 noted K105 with root the point O⊥ =
(cos 2A; cos 2B; cos 2C) 3. See figure 7.2

Its equation is :

(a2 + b2 + c2)xyz +
∑

cyclic

cos 2A x(c2y2 + b2z2) = 0

One of the simplest geometric description of this cubic is the locus of point M such
that the circle with diameter MgM passes through O.

It is also the locus of the intersections of a line ℓ through O with the rectangular
hyperbola which is the isogonal image of the perpendicular at O to ℓ.

This cubic passes though O,H and O⊥
a , O

⊥
b , O

⊥
c . The third point on OH is on the

tangent at X110 to the circumcircle.
The third point on AH is AH ∩OO⊥

a and the third point on AO is AO ∩HO⊥
a .

Its asymptotes form an equilateral triangle centered at G whose circumcircle has
radius 2R/3. This triangle is homothetic to the circumtangential triangle under hH,2/3

and both triangles are homothetic to Morley triangle.

7.2.3 K085 an isogonal conico-pivotal nK60

In [24], we have met an isotomic non-pivotal cubic called ”the Simson cubic” for
which the line through a point M on the curve and tM envelopes an ellipse inscribed
in the antimedial triangle GaGbGc. We call this conic the pivotal conic of the cubic and
say the cubic is a conico-pivotal cubic.

Similarly, we find an isogonal conico-pivotal nK60 with root at [a(a2+ ab+ ac− 2bc)]
(on the line GK) with equation :

−2abc(a2 + b2 + c2)xyz +
∑

cyclic

a(a2 + ab+ ac− 2bc) x(c2y2 + b2z2) = 0

3We call the point O⊥ ”orthocorrespondent” of O : the perpendicular lines at O to the lines
OA,OB,OC meet the sidelines BC,CA,AB at three collinear points O⊥

a , O⊥

b , O⊥

c called the ”ortho-
traces” of O and then O⊥ is the tripole of the line through those three points. We call this line ”ortho-
tranversal” of O. O⊥ is obviously on GK since cos 2A = 1− 2 sin2 A.
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A

B C

S*

S

X110

trilinear polar 

of X1993

H

O

Jerabek

 hyperbola

polar conic of S

M

N

N*M*

R

R1

R2

Figure 7.2: K105 a nK60 related to perpendicular polar lines

It has a singularity at I (incenter) and any line through a point M on the curve and gM
enveloppes a conic inscribed in the triangle IaIbIc (excenters). See figure 7.3.

This cubic is the locus of point M such that the circle with diameter MgM is or-
thogonal to the circle centered at O passing through I.

A

B C

G

Ia

I

Ic

Ib

  pivotal

conic

   contact

conic

Figure 7.3: K085 an isogonal conico-pivotal nK60
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7.2.4 K098 the NPC pedal cubic

The locus of point M such that the pedal circle of M passes through a fixed point Q
is an isogonal nK with root Q⊥.

This cubic becomes a nK60 if and only if Q = X5. It is denoted K098. See figure
7.4. Its root is, as usual, a point on the line GK. Here, this is X⊥

5 with coordinates :

[
a2(a4 + b4 + c4 − 2a2b2 − 2a2c2 − b2c2)

]
.

Its equation is :

∑

cyclic

a2(a4 + b4 + c4 − 2a2b2 − 2a2c2 − b2c2)x (c2y2 + b2z2) + a2b2c2(a2 + b2 + c2)xyz = 0

The triangle formed with the asymptotes has circumradius R/3, center G.

A

B C

G

Kjp

Figure 7.4: K098 the NPC pedal cubic

7.3 Isotomic nK60 cubics

In this paragraph, we take Ω = G and RΩ =
[
4S2

A − b2c2
]
which is tPo.

The common asymptotic directions of all cubics are again the sidelines of the (first)
Morley triangle. The root P is on the line GtK.

All those cubics meet the Steiner circum-ellipse at A,B,C and three other points
Ta, Tb, Tc which are the isotomic conjugates of the points at infinity of the Morley side-
lines : those points are the vertices of another equilateral triangle and are the intersections
- other than the Steiner point X99 - of the Steiner circum-ellipse with the circle centered
at tK through X99. See [23] for details.

The center of the triangle formed with the asymptotes (center of the circle which is
the poloconic of L∞ ) is a point on the parallel to the Brocard line OK at the midpoint
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X381 of GH 4.

Remark :

one of the cubics degenerates into the union of the Steiner circum-ellipse and L∞ and
is obtained when the root is G.

7.3.1 K094 the isotomic nK+
60

The only nK+
60 of the pencil is obtained with root

P = [b2c2(b2 + c2 − 5a2)] 5

and its equation is :

2
[
(b2 + c2)(c2 + a2)(a2 + b2)− 8a2b2c2

]
xyz +

∑

cyclic

b2c2(b2 + c2 − 5a2)x(y2 + z2) = 0

A

B C

K"

X99

Ta

Tb

Tc

Figure 7.5: K094 the isotomic nK+
60

The three asymptotes are concurring at K ′′ symmetric of K about G 6.
The cubic intersects the sidelines of ABC at U, V,W which are on ∆P = IP(P ). This

line is perpendicular to GK.
The tangents at A,B,C intersect the sidelines of ABC at A1, B1, C1 which lie on

∆tP = IP(tP ). This line is perpendicular to OK.

4An equation of this line is :
∑

cyclic

(b2 − c2)(4a2SA + b2c2) x = 0

5This point is the isotomic of the isogonal of the symmetric of G about K which is [b2 + c2 − 5a2]
6K′′ is X599 in [38, 39]. Its coordinates are (2b2+2c2 −a2). It is the perspector of the Lemoine ellipse

i.e. inscribed ellipse with foci G and K.
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7.3.2 Other examples of isotomic nK60

• K093 We find a very simple isotomic nK60 when the root is

[2a2(b2 + c2)− b2c2]

which is the symmetric of tK about G. See figure 7.6.

This is a nK0 whose equation is :

∑

cyclic

[
2a2(b2 + c2)− b2c2

]
x (y2 + z2) = 0

A

B C

G
X99

Ta

Tb

Tc

X76

Steiner 

ellipse

Figure 7.6: K093 an isotomic nK0−60

• K198 When the root is tK, we find a remarkable isotomic nK60 with equation :

∑

cyclic

b2c2x (y2 + z2) + 2(b2c2 + c2a2 + a2b2)xyz = 0

In this case, the circumcircle of the triangle formed with the asymptotes is centered
at X381 (midpoint of GH) and has radius 2R (circumcircle radius). See figure 7.7.

7.3.3 K089 an isotomic conico-pivotal nK60

When we take the point P = [4a2(b2 + c2) − 5b2c2] 7 as root, we obtain another
isotomic conico-pivotal cubic (see [24]) which is now a nK60 denoted K089. See figure
7.8.

Its equation is :

∑

cyclic

[
4a2(b2 + c2)− 5b2c2

]
x(y2 + z2)− 6 (b2c2 + c2a2 + a2b2)xyz = 0

7This point is the homothetic of tK under h(G,−3).
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A
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X99

(D)
Ta

X76
Tb Tc

de Longchamps axis

X381
U

V

W

C’

B’

A’

(C)

(S)

Figure 7.7: K198 an isotomic nK60

This cubic has a singularity at G.
The line through M and tM envelopes the ellipse E inscribed in GaGbGc and also in

the triangle whose sidelines join a vertex of ABC to the foot of the tripolar of P on the
opposite side. Knowing six tangents, it is easy to draw E . Its center is [a2(b2+c2)−8b2c2]
on GtK 8.

The tangents at G are the tangents drawn through G to E (they can be real or
imaginary).

It is fairly easy to draw the asymptotes : the tangent at Ta to the circle centered at
tK is also tangent to E at ta. The symmetric (which is on the cubic) of ta about Ta has
its isotomic conjugate on the tangent at Ta and on the asymptote parallel to TbTc.

7.4 nK++
60 isocubics

We have seen that neither isogonal nor isotomic conjugation give a nK++
60 . It seems

natural to seek such cubics for another Ω-isoconjugation. We have the following theorem :

7.4.1 Main theorem for nK++
60 isocubics

Each nK++
60 isocubic is obtained in the following manner :

Let M be a point on the circumcircle, M ′ its orthogonal projection on its Simson

line, N such that
−−→
MN = 4/3

−−−→
MM ′ and Ω the barycentric product of N and gM .

Then N is the center of the nK++
60 isocubic which is invariant under Ω-isoconjugation

and which has the line MM ′ as asymptote.
The root can be obtained according to §3.3.2.

8This point is the homothetic of tK under h(G, 3/2).
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Ga

A

B C

Ta

Tb
Tc

G

Gc Gb

Figure 7.8: K089 an isotomic conico-pivotal nK60

Remarks :

1. The locus of Ω is a conic C1 through Po whose equation is :
∑

cyclic

(4S2
A − b2c2)x2 +

[
a2(a2 + b2 + c2)− 2(b2 − c2)2

]
yz = 0

Its center is the point
[
a2(5b2 + 5c2 − 7a2)− 4(b2 − c2)2

]
on the line GK.

2. The locus of N is a bicircular circum-quartic Q1 easy to draw.

3. The asymptote MM ′ is a Simson line with respect to triangle JaJbJc (excenters).
This means that there are three nK++

60 isocubics with given asymptotic directions.
They can be obtained with three points M1,M2,M3 vertices of an inscribed equi-
lateral triangle in the circumcircle.

4. The cubic can degenerate into a line and a conic : that happens for example when
the point M on the circumcircle is the second intersection of an internal bisector.

7.4.2 K139 the Po-isoconjugate nK++
60 cubic

There is only one nK++
60 with pole Po = X1989 obtained when M = X74. This is

K139. See figure 7.9.
One of its asymptotes is parallel to the Euler line and the three asymptotes concur

at the Po -isoconjugate of X30 which is :
[

1

(4S2
A − b2c2)[(b2 − c2)2 + a2(b2 + c2 − 2a2)]

]
.

Its equation is :
∑

cyclic

(b2 − c2)Ea x (roy
2 + qoz

2)− 6(a2 − b2)(b2 − c2)(c2 − a2)xyz = 0
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A

B
C

X

X74

Euler line

Simson line

of X(74)

Figure 7.9: K139 a nK++
60

with
Ea = 8S4

A − 4b2c2S2
A + 9a2b2c2SA − 4b4c4

and where Eb and Ec are found similarly. See §6.1 for po, qo, ro.

7.4.3 Other remarkable Ω-isoconjugate nK++
60 isocubics

We have been unable to find a reasonnably simple cubic with the most commonly used
points on the circumcircle. One of the less complicated has center with first barycentric
coordinate :

(a+ b− 2c)(a − 2b+ c)(a5 − 2a4b+ 7a3b2 + 4a2b3 − 5ab4 + b5 − 2a4c− 9a3bc

−5a2b2c+ b4c+ 7a3c2 − 5a2bc2 + 10ab2c2 − 2b3c2 + 4a2c3 − 2b2c3 − 5ac4 + bc4 + c5)

and pole :

[
(b− c)(3a3 − 2a2b− 4ab2 + b3 − 2a2c+ 7abc− 4ac2 + c3)

]

One of its asymptote is parallel to the line IG.

7.5 A K+
60 summary

Ω being a point not on the sidelines of ABC, we can sum up the study in the following
manner :

• if Ω /∈ Co, there is only one K+
60 with pole Ω and this cubic is non-pivotal.

(this is the case of the isotomic conjugation)

• if Ω ∈ Co and Ω 6= Po, there are exactly two K+
60 with pole Ω :
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– one is pivotal with pivot on the Neuberg cubic and its asymptotes concurring
on the quartic Qo. (This K+

60 is K++
60 if and only if the pivot is the anticom-

plement of one of the Fermat points)

– the other is non-pivotal. (this is the case of the isogonal conjugation, the
cubics being the McCay cubic and Kjp)

• if Ω = Po, there are infinitely many K+
60 with pole Ω :

– one only is pivotal (the Tixier cubic with pivot X30).

– the others are non-pivotal with their root on the perpendicular bisector of OH
and their asymptotes concurring on the circle Γo.



Chapter 8

Conico-pivotal (unicursal)
isocubics or cK

8.1 Theorems and definitions

(See also [24])

• A nK with root P = (u : v : w) is a conico-pivotal isocubic invariant under an
isoconjugation if and only if it passes through one and only one of the fixed points
F = (f : g : h) of the isoconjugation : for any point M on the curve, the line
through M and its isoconjugate M∗ envelopes a conic we call the pivotal-conic
of the cubic.

In this case, the cubic has a singularity at F and is unicursal.

A conico-pivotal isocubic will be denoted by cK.

An equation of this cubic is :

−2(ghu+ hfv + fgw)xyz +
∑

cyclic

ux(h2y2 + g2z2) = 0

which rewrites as : ∑

cyclic

ux(hy − gz)2 = 0

showing that, for a given F , those cubics are in a net generated by the three
degenerated cubics into a sideline of ABC and the corresponding cevian line of F
counted twice.

The pivotal-conic C is inscribed in the precevian triangle of F (formed with the
three other fixed points of the isoconjugation) and has equation :

∑

cyclic

[
(gw − hv)2x2 − 2

(
ghu2 + 3fu(hv + gw) + f2vw

)
yz

]
= 0

and center : [u(g + h− 2f) + f(v + w)].

• The three contacts of cK and C lie on a circum-conic called contact-conic with
equation :

∑

cyclic

(
2
f

u
+

g

v
+

h

w

)
f

x
= 0

133
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its fourth common point (assuming that the conics are distinct, see §8.3 below)
with C being : [(

2
f

u
+

g

v
+

h

w

)
/(gw − hv)

]

• The isoconjugate of this circum-conic is the polar line of F in the pivotal-conic C.
An equation of this line is :

∑

cyclic

(
2
f

u
+

g

v
+

h

w

)
x

f
= 0

This line passes through the real inflexion point(s) which is (are) isoconjugate(s)
of the real contact(s).

• The two tangents at F to the cubic are the tangents (real or imaginary) drawn
from F to C. 1

• When the pivotal-conic is a circle, cK is called a cyclo-pivotal isocubic.

We have already met examples of conico-pivotal isocubics in §7.2.3 and §7.3.3.
The goal of this paragraph is to systematize the research of such cubics and realize

their construction.

8.2 Construction of a conico-pivotal isocubic and its piv-
otal conic

Given F and P as above, we denote by FaFbFc the precevian triangle of F and by
U, V,W the feet of IP(P ).

Remark : The following constructions can be realized with a ruler only.

8.2.1 Starting from the pivotal conic

• First construct the pivotal-conic C entirely determined by six tangents : the side-
lines of FaFbFc and the lines AU , BV , CW . Let Q be its contact with CW (or
AU , or BV ) and Q′ the harmonic conjugate of Q with respect to C and W .

A variable tangent (T ) at T to C meets CW at t and let t′ be the harmonic conjugate
of t with respect to C and W . The tangent (T ) and Ft′ meet at M on the cubic.

• FT and CW intersect at E. E′ is the harmonic conjugate of E with respect to
F and T . The tangent at M to the cubic is the harmonic conjugate of ME′ with
respect to the lines MC and MW .

• From M we can draw another tangent (T ′) to C. The lines MT ′ and FT meet at
N on the cubic and the harmonic conjugate of M with respect to N and T ′ is M∗,
isoconjugate of M . Note that the point FT ′ ∩NN∗ also lies on the cubic.

1More precisely, when the two nodal tangents are real the cubic is said to be crunodal and has only
one real inflexion point. On the other hand, when these tangents are imaginary the cubic is said to be
acnodal and has three real collinear inflexion points.
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8.2.2 Starting from an inscribed conic

Let γ be the inscribed conic with perspector the cevian product Q of F and P . 2 Q
is the perspector of triangles ABC and A′B′C ′ where A′ = PFa∩BC,B′ and C ′ defined
likewise. A variable tangent τ to γ meets the lines FU , FV , FW at Za, Zb, Zc. The
perspector Z of triangles ABC and ZaZbZc is a point of the cubic. Now, let us construct
A′′ = FA′ ∩ FbFc and B′′, C ′′ similarly. The perspector R of triangles A′′B′′C ′′ and
FaFbFc is the perspector (with respect to FaFbFc) of the pivotal-conic.

8.2.3 With trilinear polars

Let Sa be the trilinear pole of the line through the points AB ∩ FV and AC ∩ FW .
The points Sb and Sc being defined likewise, Sa, Sb and Sc are collinear on the line
s whose trilinear pole S is the perspector of the inscribed conic γ seen in paragraph
above. For any point Q on s, the line q = IP(Q) intersects FU , FV , FW at Qa, Qb,
Qc respectively. The lines AQa, BQb, CQc concur on the cubic at M and the line q
envelopes C.

8.2.4 cK with given node passing through a given point

Let F = (f : g : h) be the fixed point of an isoconjugation and the node of a cK with
root P = (u : v : w).

Let M be a point not lying on a cevian line of F . This cubic passes through M =
(α : β : γ) (and also its isoconjugate M∗) if and only if P lies on the line L with equation
: ∑

cyclic

α (hβ − gγ)2 x = 0.

This line L passes through the trilinear poles of the lines FM and FM∗ with first
barycentric coordinates :

1

hβ − gγ
and

f

α (hβ − gγ)
respectively.

It follows that there is a pencil of cubics cK with node F passing through M and
M∗.

This pencil is generated by two decomposed cubics namely the union of the line FM
(resp. FM∗) and the circum-conic which is its isoconjugate hence passing through F ,
M∗ (resp. F , M).

8.3 Circum-conico-pivotal isocubics

• When C is a circum-conic, cK is called circum-conico-pivotal isocubic. A quick
computation shows that the root must be F therefore, for a given isoconjugation,
there are four circum-conico-pivotal isocubics.

The equation of the cubic rewrites as :

−6 fgh xyz +
∑

cyclic

fx(h2y2 + g2z2) = 0 ⇐⇒
∑

cyclic

fx(hy − gz)2 = 0

2Q is called Ceva point in [39].
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and the pivotal-conic is the circum-conic with perspector F (its equation is : fyz+
gzx+ hxy = 0) and center G/F = [f(g + h− f)].

Hence, it is tritangent to the cubic at A,B,C and the cubic meets the sidelines of
ABC at three points lying on IP(F ) which are inflexion points.

Let us remark that, in this case, the pivotal-conic and the contact-conic are iden-
tical.

This cubic can be seen as the locus of M intersection of a tangent to C with the
trilinear polar of the point of tangency.

• Examples

– K228 when F = I, we obtain an isogonal cK with equation :

∑

cyclic

ax(cy − bz)2 = 0

– K015 when F = G, we obtain the Tucker nodal cubic, an isotomic cK with
equation : ∑

cyclic

x(y − z)2 = 0

and C is the Steiner circum-ellipse.

– K229 when F = K, we obtain a cK such that C is the circumcircle. Its
equation is : ∑

cyclic

a2x(c2y − b2z)2 = 0

– when F = O, C is the circum-ellipse with center K.

– when F = X523, we obtain a cK such that C is the Kiepert hyperbola.

More generally, the pivotal-conic is a circum-rectangular hyperbola if and
only if F lies on the orthic axis. The pole Ω of the isoconjugation lies on the
inscribed ellipse with perspector X393 and center [a4 + (b2 − c2)2] intersection
of the lines X2−X39 and X4−X32. This ellipse passes through X115 and has
equation : ∑

cyclic

S 4
A x2 − 2S 2

BS
2
C y z = 0

– when F = X115, we obtain a cK such that C is the parabola with equation :

∑

cyclic

(b2 − c2)2 yz = 0

i.e. the isogonal conjugate of the tangent at X110 to the circumcircle 3.

More generally, it is easy to see that the pivotal-conic is a circum-parabola if
and only if F lies on the inscribed Steiner ellipse.

3This parabola passes through X476, X523, X685, X850, X892.
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8.4 Cyclo-pivotal isocubics

It is clear that there are four inscribed circles in the precevian triangle of F
(in/excircles) therefore, for a given isoconjugation with four real fixed points, there
are 16 cyclo-pivotal isocubics, sharing four by four the same pivotal-circle.

We have already met such a cubic in 8.3 with F = K where C is the circumcircle.

8.4.1 Isogonal cyclo-pivotal isocubics

When F = I (incenter), the precevian triangle of I is IaIbIc (excenters) and we can
find four isogonal cyclo-pivotal isocubics with circles centered at X164 and harmonic
associates.

8.4.2 Isotomic cyclo-pivotal isocubics

Taking G as fixed point of isotomic conjugation, we find four cyclo-pivotal isocubics
with circles centered at the Nagel points passing through the Feuerbach points of
the antimedial triangle. One of them is K090 with equation :

∑

cyclic

(b+ c− 3a)x(y2 + z2) + 2(a+ b+ c)xyz = 0

with root X145 = aX8 (X8 = Nagel point), C being the circle centered at X8 passing
through X100= aX11 (X11 = Feuerbach point) i.e. the incircle of the antimedial
triangle. See figure 8.1.

A

B C

G

X100

X8

Ga

GbGc

contact conic

Figure 8.1: K090 an example of isotomic cyclo-pivotal isocubic
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8.5 Circular conico-pivotal isocubics

We find two very different situations according to the fact that the isoconjugation is
or is not isogonal conjugation.

8.5.1 Circular isogonal conico-pivotal isocubics

A computation shows that, when we take F = I (or one of the excenters), there is
a pencil of circular isogonal conico-pivotal isocubics which are all strophoids as seen in
§4.3.2.

The pivotal conic is a parabola.

8.5.2 Circular non-isogonal conico-pivotal isocubics

We now suppose that the conjugation is not isogonal conjugation.

Theorem :

For any point F (f, g, h) not on ABC sidelines, there is one and only one circular non-
isogonal conico-pivotal isocubic with singularity at F invariant under the isoconjugation
having F as fixed point. Its root is :

R =
[
(a2gh + b2hf + c2fg)2 − b2c2f2 (f + g + h)2

]

clearly on the line through G and the isoconjugate of K.

an example : K088

Let us take F = G. There is one and only one circular isotomic conico-pivotal isocubic
with node at G. This is K088. See figure 8.2. Its root is :

[
(a2 + b2 + c2)2 − 9 b2c2

]

and its equation is :

∑

cyclic

[
(a2 + b2 + c2)2 − 9b2c2

]
x(y2 + z2)− 6(a4 + b4 + c4 − b2c2 − c2a2 − a2b2)xyz = 0

The pivotal conic is inscribed in the antimedial triangle and is centered at :

[
(b2 + c2 − 2a2)(2b2 + 2c2 − a2)

]

8.6 Equilateral conico-pivotal isocubics or cK60

In paragraphs §7.2.3 and §7.3.3 we have met two cK60, one is isogonal and the other
isotomic.

More generally, for any isoconjugation with one fixed point F = (f : g : h), there
is one and only one cK60 with singularity at F . Its root is too complicated to be given
here.
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A

B
C

G

X99

asymptote

X

pivotal conic

Euler line

Figure 8.2: K088 an example of circular isotomic conico-pivotal isocubic

This cK60 becomes a cK+
60 when F lies on a tricircular sextic with singularities at

A,B,C passing through only one known center, namely X80 = giI. The corresponding
cK+

60 is K230 with root :

E596 =

[
b+ c− 2a

a(b+ c− a)(b2 + c2 − a2 − bc)

]

See figure 8.3.
The asymptotes concur at E597 a point lying on X36X80, the parallel at X80 to the

line IH.
The tangents at X80 are perpendicular.
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A

B C

X80

E597

X104

X2222

Figure 8.3: K230 a cK+
60, an example of equilateral conico-pivotal isocubic
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[21] Durège H., Die Ebenen Curven Dritter Ordnung, Leipzig, 1871.

[22] Ehrmann J.-P., Steiner’s theorems on the complete quadrilateral, Forum Geometri-
corum, vol.4, pp.35–52, 2004.

[23] Ehrmann J.-P. and Gibert B., A Morley configuration, Forum Geometricorum, vol.1,
2001.

[24] Ehrmann J.-P. and Gibert B., The Simson cubic, Forum Geometricorum, vol.1,
2001.

[25] Feld J.M., Plane Cubics Invariant under Quadratic Transformations , Tohoku Math.
Journal, pp. 299–303, 1937.

[26] Feld J.M., Anallagmatic Cubics, The American Mathematical Monthly, Vol. 55, No.
10 (Dec., 1948), pp. 635–636
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[57] Sidler J.-C., Géométrie Projective, Dunod, Paris, 2000.

[58] Stuyvaert Point remarquable dans le plan d’une cubique, Nouvelles annales de
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