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Abstract

The Thomson cubic meets the circumcircle at A, B, C and three other points Q1, Q2,
Q3 which are the vertices of the Thomson triangle T . We investigate some properties of this
triangle and, in particular, its connexion with the equiareality center X5373 related with the
Steinhaus’ problem.

1 Definition and properties of the Thomson triangle

1.1 Definition of T

Let K002 be the Thomson cubic i.e. the isogonal pivotal cubic with pivot the centroid
G of the reference triangle ABC. It is the locus of point M such that G, M and its
isogonal conjugate M∗ are collinear. This cubic has numerous properties which we will
not consider here. See [2] for further details.

K002 meets the circumcircle (O) of ABC again at three (always real) points Q1, Q2,
Q3 which are the vertices of a triangle T we shall call the Thomson triangle.

Most of the results in this paper were obtained through manipulations of symmet-
ric functions of the roots of third degree polynomials. In particular, the (barycentric)
equation of the cubic that is the union of the sidelines of T is

∑

cyclic

[

a4yz(−x+ 2y + 2z)− 2b2c2x(x− y)(x− z)
]

= 2

(

∑

cyclic

b2c2x

)(

∑

cyclic

(x2 − 2yz)

)

in which we recognize the equations of the Lemoine axis and the Steiner inellipse (S)
namely :

∑

cyclic

b2c2x = 0 and
∑

cyclic

(x2 − 2yz) = 0.

The left-hand member of the equation of T represents a cubic curve which must be
tritangent to (S).

This will give a good number of elements of T with an extensive use of the projective
properties of a general cubic curve.

1.2 Some usual centers in T

The following Table 1 gives a selection of several centers in ABC and their counterpart
in the Thomson triangle T . See the bottom of the page K002 in [2] for more.

Table 1: A selection of usual centers in T

a center in ABC X1 X2 X3 X4 X5 X6 X74 X3146

its counterpart in T X5373 X3524 X3 X2 X549 X5646 X110 X4

X5373 is the incenter of T , see §4 below for further properties.
KT = X5646 is the Lemoine point of T , the intersection of the tangents at Q1, Q2, Q3

to the Thomson cubic. This point lies on the lines X2, X1350 and X64, X631. Note that
the polar conic of KT with respect to T is the circumcircle which turns out to be the
circum-conic with perpsector KT with respect to T .
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1.3 Miscellaneous properties

Here are some other properties of T .

Property 1 : The Simson line of Qi with respect to ABC is the reflection of QjQk

about G and, similarly, the Simson line of A with respect to T is the reflection of BC
about G.

Property 2 : Let M be a point on the circumcircle and f the fonction defined by
f(M) = MA.MB.MC. f is obviously minimum when M is at A, B or C. It is (locally)
maximum when M is one of the points Qi.

1

The product of these maxima is :

a2b2c2
(

2R

3

)3

, R being the circumradius of ABC.

It is known (see [7], p.15) that MA.MB.MC = 4R2δ where δ is the distance from
M to its Simson line. It follows that these points Qi are those for which δ is (locally)
maximum.

The product of these maxima is therefore :

a2b2c2

(6R)3
=

2∆2

27R
, ∆ being the area of ABC.

Property 3 : Jean-Pierre Ehrmann has shown that each altitude of T (i.e. each line
X2Qi) is the common axis of the circumscribed and inscribed parabolas which have a
maximal parameter. This is analogous to Property 2.

Figure 1 shows the three inscribed parabolas with foci the points Q1, Q2, Q3 and
vertices S1, S2, S3.

A

B C

G

K002

Q3

H Q2

Q1

S3

S2

S1

Figure 1: Three inscribed parabolas with maximal parameter

1This is discussed in the thread : Triangle des maxima, Les-Mathématiques.net, in French
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Property 4 : Other properties.

1.
−−→
GQ1 +

−−→
GQ2 +

−−→
GQ3 = 2

−→
GO.

2. GQ1.GQ2.GQ3 =
1

9
abc cotω, where ω is the Brocard angle.

3. GQ2
1 + GQ2

2 + GQ2
3 = 3R2 + GO2 which can easily be generalized for any point M

in the plane as follows :

MQ2
1 +MQ2

2 +MQ2
3 = 3R2 +MO2 + 2

−−→
GM �

−−→
OM .

4. Q1Q
2
2 +Q2Q

2
3 +Q3Q

2
1 = 9R2 −GO2.

1.4 Circumconics of the Thomson triangle

T is not constructible with ruler and compass but its vertices lie on several (easy
to construct) conics (apart the circumcircle) and in particular on several rectangular
hyperbolas forming a pencil and all containing G since it is the orthocenter of T .

Note that the two triangles ABC and T share the same Euler line and obviously the
same circumcenter O. The usual triangle centers on the Euler line in T are the images of
those of ABC under the homothety with center O, ratio 1/3. For example, the centroid
of T is X3524.

Naturally, the centers of these hyperbolas lie on the nine point circle of T which is the
circle with center X549 (midpoint of GO) and radius R/2. This circle contains X2482.

The equation of the rectangular hyperbola that contains the point u : v : w is :

∑

cyclic

a2[vw(−x+ 2y+ 2z)(y− z) + v(u− 2v)z(x+ y− 2z)−w(u− 2w)y(x− 2y+ z)] = 0.

Figure 2 shows the Jerabek hyperbola JT of T (which is the rectangular hyperbola
that contains the point O) with equation

∑

cyclic

b2c2(b2 − c2) x (−2x+ y + z) = 0.

Table 2 gives a selection of these rectangular hyperbolas.

Table 2: Rectangular hyperbolas passing through the vertices of T

centers on the hyperbola apart G remarks

X3, X6, X110, X154, X354, X392, X1201, X2574, X2575, X3167, see remark 1 JT
X511, X512, X574, X805, X3231

X55, X513, X517, X672, X901, X1149

X1, X9, X100, X165, X3158

X30, X230, X476, X523

X99, X376, X551, X3413, X3414, see remark 2 center X2482

Remark 1 : JT is a member of the pencil of conics generated by the Jerabek and
Stammler hyperbolas. Its center is X5642.

JT also contains X5544, X5638, X5639, X5643, X5644, X5645, X5646, X5648, X5652, X5653,
X5654, X5655, X5656. These points were added to [6] in June 2014.

Remark 2 : This rectangular hyperbola is the reflection of the Kiepert hyperbola
about G.
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Figure 2: Jerabek hyperbola of T

Remark 3 : JT is connected with the cubics of the Euler pencil (see Table 27) in the

following manner. Let P be the point on the Euler line such that
−→
OP = t

−−→
OH and let

K = pK(X6, P ) be the isogonal pivotal cubic with pivot P . There is one and only one
point Q whose polar conic in K is a (possibly degenerate) circle and this point lies on JT .

The first coordinate of Q is :

a2[3 b2c2 + (a2b2 + a2c2 − b4 − c4) t− (a2 − b2)(a2 − c2) t2].

The following table 3 gives Q for the most remarkable cubics of Euler pencil.

Table 3: JT and the cubics of the Euler pencil

t ∞ 1/3 0 -1 1/2 1 -1/3

P X30 X2 X3 X20 X5 X4 X376

Q X110 X5544 X2 X3 X5643 X6 X5646

K K001 K002 K003 K004 K005 K006 K243

Remark 4 : In a similar way, JT is connected with the cubics nK0(X6, R) where the
root R is a point on the line GK = X2X6. Indeed, for any such point R, there is also one
and only one point Q whose polar conic in nK0(X6, R) is a (possibly degenerate) circle
and this point lies on JT .

When R = X2 and R = X6, we obtain the cubics K082 and K024 with corresponding
points Q = X6 and Q = X2 respectively but, in both cases, the polar conic splits into the
line at infinity and another line. Recall that these two cubics are K+ i.e. have concurring
asymptotes. There is actually a third K+ in the pencil but its root is complicated and
unlisted in ETC.

When R = X230, the cubic is circular, namely K189, and then Q = X110 is its singular
focus. Another example is obtained withR = X385 and the cubic K017. The corresponding
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point Q is the second intersection (apart G) of the line X2X694 with JT , SEARCH =
7.71122335962109.

Remark 5 : Conversely, if Q is taken on JT , one can find P on the Euler line and R
on the line GK such that the polar conics of Q in pK(X6, P ) and nK0(X6, R) are both
circles.

If P ′ (on the Euler line) is the isogonal conjugate of Q with respect to the Thomson
triangle (see §3 below), then P is its homothetic under h(O,−1/3). Let E be the ellipse
passing through X4, X32, X7736 and tangent at these points to the Euler line, the Brocard
axis, the line GK respectively. E also passes through X1506, X6781. The tangent at P to
E which is not the Euler line meets the line GK at the requested point R. See figure 3.

A

B C
G

K

P

H

O

X110

P'

Q1

X7736

Q3

Q2

Q

R

JT

E

K002

X32

Figure 3: JT and circular polar conics in pK(X6, P ) and nK0(X6, R)

For a given point Q on JT , pK(X6, P ) and nK0(X6, R) generate a pencil of cubics and
the polar conic of Q in any cubic is a (possibly degenerated) circle.

Examples :
– with Q = X110, the cubics are the Neuberg cubic K001 and X189, both circular with

focus X110.
– with Q = X2, the cubics are the McCay cubic K003 and the Kjp cubic X024, both

stelloids with radial center X2.
– with Q = X6, the cubics are K006 and K082.

1.5 Inconics of the Thomson triangle

Any conic inscribed in T is the poloconic of a line with respect to T . On the other
hand, since the triangles ABC and T are both inscribed in (O), they must circumscribe
a same conic which is the Steiner inellipse (S) of ABC. This is a classical property of
poristic triangles.

The contacts of (S) with the sidelines of T are the feet R1, R2, R3 of the normals drawn
from the Lemoine point K to (S), the fourth foot being X115, the center of the Kiepert
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hyperbola. These points R1, R2, R3 also lie on the Apollonius rectangular hyperbola of
K with respect to (S). This latter hyperbola is homothetic to the Kiepert hyperbola and
passes through X2, X4, X6, X39, X115, X1640.

Note that Ri is the barycentric square of the isogonal conjugate Q∗
i of Qi and also

QjQk is the trilinear polar of Q∗
i .

These three lines QiRi concur at the intersection XQR of the lines X6, X376 and
X39, X631, a point with first barycentric coordinate :

3a2(a2 + 4b2 + 4c2) + (b2 − c2)2

and SEARCH = 1.3852076515.
This point XQR does not lie on the Thomson cubic K002 hence K002 is not a pivotal

cubic with respect to T but “only” a psK (see [3]) with pseudo-pivot XQR and pseudo-
isopivot KT , the Lemoine point of T .

Figure 4 shows the Steiner inellipse inscribed in both triangles ABC and T .

A

B C

G

K002

Q3

H

O

Q2

Q1

A'

B'C'

R3
R2

R1

K

Figure 4: The Steiner inellipse is inscribed in T

Furthermore, the parabola with focus X74 and directrix the Euler line is the Kiepert
parabola of T . It is the reflection about O of the Kiepert parabola (of ABC).

1.6 Diagonal conics of the Thomson triangle

A conic is said to be diagonal with respect to a certain triangle when the triangle
is self-polar in the conic i.e. the polar line of one vertex of the triangle is the opposite
sideline.

A computation gives the equation of the polar circle of T which turns out to be the
circle with center G (the orthocenter of T ) and radius the square root of −(a2+b2+c2)/18.
This shows that this circle is always imaginary hence that T is always an acute angled
triangle.
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The same technique gives the diagonal rectangular hyperbolas which must contain the
in/excenters of T . These form a pencil and their centers lie on the circumcircle.

The equation of that passing through a given point is rather tedious. We shall only
give three examples which are more than enough to construct these in/excenters. See
table 4.

Table 4: Diagonal rectangular hyperbolas with respect to T

centers on the hyperbola center of the hyperbola

X3, X40, X64, X1350, X2574, X2575 X74, see below

X2, X3413, X3414 X98

X30, X523, X549 X477

Figure 5 shows the two diagonal rectangular hyperbolas passing through O (plain red
curve) and G (dashed red curve). Their asymptotes are parallel to those of the Jerabek
and Kiepert hyperbolas respectively. Note that the former hyperbola is the Stammler
hyperbola of T . It is the reflection of the Stammler hyperbola (of ABC) about O.

A

B C

G

K002

Q3

H

O

Q2

Q1

Figure 5: Two diagonal rectangular hyperbolas

In §4 we shall see the connexion of these hyperbolas with the equiareality center X5373.

2 Cubics related with the Thomson triangle

In this section, we characterize the cubics – apart the Thomson cubic K002 – that pass
through the vertices of T .

2.1 Other pivotal cubics passing through the vertices of T

We simply recall several results already mentioned (and generalized) in [4].
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Proposition 1 The pivotal cubic pK(Ω, P ) passes through the vertices of the Thomson
triangle if and only if :

• its pole Ω lies on K346 = pK(X1501, X6),

passing through Xi for i = 6, 25, 31, 32, 41, 184, 604, 2199, 3172, 7118.

• its pivot P lies on the Thomson cubic K002,

• its isopivot P ∗ lies on K172 = pK(X32, X3),

passing through Xi for i = 3, 6, 25, 55, 56, 64, 154, 198, 1033, 1035, 1436, 7037.

Note that each cubic contains X6 and then also P/X6 (which is a point on K172) and
its Ω−isoconjugate (P/X6)

∗ (which is a point on the Darboux cubic K004).
When the pivot P is chosen on K002, the isopivot P ∗ and the pole Ω are the barycentric

products of X6 by aP (the anticomplement of P ) and X2/P (center of the circum-conic
with perspector P ) respectively.

Furthermore, if P and P ′ are two isogonal conjugate points on the Thomson cubic
K002, then

– the two corresponding poles are two points of K346 collinear with X25,
– the two corresponding isopivots are two points of K172 collinear with X6,
– the two corresponding points (P/X6)

∗ are two points of K004 collinear with X20,
hence isogonal conjugates in ABC.

Table 5 gives a selection of cubics according to their pivot P on the Thomson cubic
K002.

Table 5: Pivotal cubics passing through the vertices of T

P Ω (Xi or SEARCH) cubic or Xi on the cubic

X1 X41 K761
X2 X6 K002
X3 X32 K172
X4 X3172 X4, X6, X20, X25, X154, X1249

X6 X184 K167
X9 X31 K760
X57 X2199 X6, X40, X56, X57, X198, X223

X223 X604 X6, X57, X223, X266, X1035, X1436, X3345

X282 0.3666241407629 X6, X282, X1035, X1436, X1490

X1073 0.6990940852287 X6, X64, X1033, X1073, X1498

X1249 X25 X4, X6, X64, X1033, X1249, X3346

2.2 Non-pivotal cubics passing through the vertices of T

An easy computation shows that one can find a proper non-pivotal isocubic nK passing
through the vertices of the Thomson triangle if and only if it is a nK0 i.e. a cubic without
term in xyz. Indeed, the presence of a term in xyz yields to a cubic that must decompose
into the circumcircle and a line which is its isoconjugate and therefore the trilinear polar
of its root.

Let us then consider a non-pivotal isocubic nK0(Ω, P ).

Proposition 2 The cubic nK0(Ω, P ) passes through the vertices of the Thomson triangle
if and only if :
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• its pole Ω lies on the Lemoine axis i.e. the trilinear polar of X6,

• its root P lies on the line at infinity.

The line Ω, P envelopes the parabola with focus X110, directrix the perpendicular at
X23 to the Euler line or, equivalently, the polar line of G in the circumcircle.

Note that each cubic contains X6 again. Figure 6 below presents two of these cubics
nK0 namely :

– K624 = nK+
0 (X512, X30) which has three real asymptotes councurring at G. It

contains X6, X523, X2574, X2575.
– K625 = nK0(X351, X542) passing through X6, X187, X511, X523, X690.

A

B C

K002
Q3

Q2

Q1

K

K625 K624

Figure 6: K624 and K625 in the Thomson triangle

2.3 Pseudo-pivotal cubics passing through the vertices of T

Recall that a pseudo-pivotal cubic psK is a circum-cubic such that equivalently :

• the other intersections with the sidelines of ABC form a triangle perspective (at P )
with ABC,

• the tangents at A, B, C concur (at Q).

In this case, P , Q, Ω = P × Q are called pseudo-pivot, pseudo-isopivot, pseudo-pole
respectively. When P (and then Q) lies on the cubic, it becomes a pivotal cubic. See [3]
for more informations.

An easy computation gives

Proposition 3 A pseudo-pivotal cubic psK(Ω, P ) passes through the vertices of the Thom-
son triangle if and only if :
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• its pseudo-pole Ω is X6 × G/P where G/P is the center of the circum-conic with
perspector P ,

• its pseudo-pivot P is G/(Ω×X76).

It follows that, for given Ω or P , there is one and only one such cubic.
For P = u : v : w, its equation is :

∑

cyclic

a2yz[u(−u+ v + w)(wy − vz) + vw(v − w)x] = 0.

Naturally, for any P on the Thomson cubic, this psK becomes a pK and passes through
K, P and P/K. In this case, its pole lies on K346. See §2.1.

Figure 7 shows psK(X3167, X69, X3) passing through X3, X20, X459, X3167 and the
vertices of the cevian triangle of X69, its pseudo-pivot. The pseudo-isopivot is X3053.

A

B C

K002

Q3
Q2

Q1

X459

X20

X3

X3167

X3053

X69

Figure 7: psK(X3167,X69,X3) in the Thomson triangle

2.4 Equilateral cubics passing through the vertices of T

Recall that a cubic is said to be equilateral when it has three real asymptotes making
60◦ angles with one another. This occurs when the polar conics of the points at infinity
are rectangular hyperbolas i.e. when the orthic line of the cubic (when it is defined i.e.
when the asymptotes do not concur) is the line at infinity.

Proposition 4 Any equilateral cubics passing through the vertices of T must contain the
infinite points of the McCay cubic K003.
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This shows that all these equilateral cubics have nine common points (six on the cir-
cumcircle and three at infinity) and therefore belong to a same pencil obviously containing
the decomposed cubic which is the union of the circumcircle and the line at infinity.

There is one and only one cubic with concurring asymptotes (at X5055) in this pencil
and this is K581 passing through X2, X3, X4, X262, the foci of the inscribed conic with
center the midpoint X549 of GO. See figure 8.

A

B C

G

K002

H

O X549

X262X5055

Q3

Q2

Q1

Figure 8: The equilateral cubic K581 in the Thomson triangle

2.5 Nodal cubics passing through the vertices of T

Let P be a point not lying on a sideline of ABC nor on the circumcircle, this to avoid
decomposed cubics.

After some computations, we have

Proposition 5 There is a unique nodal cubic with node P passing through the vertices
of the Thomson triangle. Moreover, there is always an isogonal pivotal cubic having the
same points at infinity.

For example, K280 and K297 are two nodal cubics with nodes G and K respectively.
We observe that these two cubics are actually two K0 (without term in xyz) and that
both contain the Lemoine point K. More generally, we have

Proposition 6 The following assertions are equivalent :

• the nodal cubic with node P is a K0,

• the nodal cubic with node P contains K,

• P lies on the nodal quartic Q090 which is the isogonal transform of the Stothers
quintic Q012.
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Q090 contains X2, X6, X15, X16, X55, X385, X672 and obviously the isogonal conjugates
of all the points of Q012. Its equation is remarkably simple :

∑

cyclic

b2c2x2[b2(x− y)z − c2(x− z)y] = 0.

The nodal tangents at P are perpendicular if and only if P lies on the circular quintic
Q091 which is the locus of P such that P and its isogonal conjugates in both triangles
ABC and T are collinear. See §3 below.

Q091 contains the vertices and the in/excenters of both triangles ABC and T (namely
X1, X5373 and their harmonic associates, see §4), O which is their common circumcenter,
the infinite points of the McCay cubic K003, the four foci of the Steiner ellipse inscribed
in both triangles.

The most remarkable corresponding cubic is probably K626, that obtained with P = O,
which turns out to be the isogonal transform of K616. K626 passes throughX3, X25, X1073,
X1384, X1617, X3167 and its nodal tangents are parallel to the asymptotes of the Jerabek
hyperbola. See figure 9.

A

B C

G

K002

H

O

X1073

X25

X1617

Q3

Q2

Q1

X1384

X3167

Figure 9: The nodal cubic K626 in the Thomson triangle

2.6 spK cubics passing through the vertices of T

This type of cubic is defined in CL055 of [2]. From the informations found there, we
obtain

Proposition 7 A cubic spK(P,Q) passes through the vertices of the Thomson triangle if
and only if Q is the midpoint of GP .

This cubic, hereby denoted by spK(P ), is the locus of the common points of a variable
line passing through G and the isogonal transform of its parallel at P .
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Figure 10: spK cubics in the Thomson triangle

When P lies at infinity, spK(P ) splits into the circumcircle and the line GP ∗ where
P ∗ is the isogonal conjugate of P . This is excluded in the sequel.

For any (finite) point P , the cubic spK(P ) contains (see Figure 10) :

1. A, B, C, G, Q1, Q2, Q3 hence these cubics form a net.

2. P ∗. The third point P3 on the line GP ∗ also lies on the line passing through P and
the isogonal conjugate of the infinite point of the line GP ∗.

3. the infinite points of pK(X6, P ).

4. two (real or not) points P1, P2 on the line GP , on the circum-conic which is its
isogonal transform hence on the Thomson cubic K002.

5. the foci of the inconic C(Q) with center Q.

6. the two other intersections S1, S2 with the axes of this inconic which are collinear
with P ∗.

7. A′, B′, C ′ on the sidelines of ABC and on the parallels at G to the lines AP , BP ,
CP respectively.

For some particular points P , we meet some special cubics again, those already men-
tioned in the previous paragraphs. For example, spK(G) is K002, the only pK of the
net.

Furthermore, every spK(P ) with P on
– K002 passes through P ,
– the line GK is a K0,
– the Steiner ellipse (S) is a nK.
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It follows that there are two cubics spK(P ) which are nK0 obtained when P is one of
the common points of line GK and (S), namely X6189 and X6190, two antipodes on (S).

The corresponding cubics are spK(X6189) = nK0(X5639, X3413) and spK(X6190) =
nK0(X5638, X3414).

Note that the trilinear polars P(X3413), P(X3414) of X3413, X3414 – the infinite points
of the Kiepert hyperbola – are parallel and meet the sidelines of T at three points lying
on the cubics nK0. More precisely, spK(X6189) meets the sidelines of ABC at U1, V1, W1

lying on the trilinear polar of X3413 and the sidelines of T on the trilinear polar of X3414.
Hence, these two cubics are also nKs with respect to T . See Figure 11.

A

B C

G

K

Q1

Q3

Q2

P(X
3414)

P(X
3413)

spK(X6190)

spK(X6189)

U1 U2

V1

V2

W1

W2

Figure 11: spK(X6189) and spK(X6190)

3 Isogonal conjugation with respect to T

Recall that the diagonal rectangular hyperbolas we met above form a pencil of conics
passing through the in/excenters of T and obviously the diagonal triangle of these four
points is T . It follows that the intersection of the polar lines of a point M in any two
of these hyperbolas concur at a same point that is the isogonal conjugate M∗

T of M with
respect to T .

With M = x : y : z, the first coordinate of M∗
T is :

a2[2SA(a
2yz + b2zx+ c2xy)− b2c2 x2 + c2SC y2 + b2SB z2 − 4∆2yz],

where ∆ is the area of ABC.
Naturally, since ABC and T share the same circumcircle (O), the isogonal conjugates

M∗ and M∗
T of M lying on the line at infinity both lie on (O). Furthermore, these two

points are antipodes on (O).
In particular, when M is the infinite point of the altitude AH of ABC, M∗ is the

antipode of A and M∗
T is A itself.
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Randy Hutson observes that M∗
T is the centroid of the antipedal triangle of M∗ (with

respect to ABC).

3.1 Bi-isogonal conjugates

When we look for points M having the same isogonal conjugate in both triangles, we
find that these point must lie on three focal cubics, each passing through one vertex of
ABC (which is the singular focus) and the three vertices of T . These cubics belong to
a same pencil hence they must have six other common points which are the requested
so-called bi-isogonal points.

These points are the two circular points at infinity and the four foci (two only are real)
of the Steiner inellipse. This is explained by the fact that the two triangles circumscribe
this latter ellipse.

3.2 Isogonal conjugates of some usual centers

The following table gives a selection of several centers in ABC and their isogonal
conjugates with respect to T .

Table 6: A table of usual isogonal conjugates

a center in ABC its isogonal in T

X1 X165

X2 X3

X3 X2

X4 X154

X5 X6030

X6 X376

X20 X3167

X30 X110

X376 X6

Remark 1 : all the points on the Euler line have their isogonal conjugates on the
Jerabek hyperbola of T . See below.

Remark 2 : the isogonal conjugate of X5 in T is the point with abscissa 5/3 in
X6, X1176 and with SEARCH = 85.5364033750526. This point is now X6030 in ETC.

3.3 Isogonal conjugates of some usual lines and related conics

Since the circumcenter of T is O, it is clear that the isogonal conjugate (with respect
to T ) of any line LO passing through O is a rectangular circum-hyperbola in T that must
contain G, the orthocenter of T . In particular, the isogonal conjugate of the Euler line is
the Jerabek hyperbola of T as already said.

The two rectangular hyperbolas obtained from LO by isogonal conjugation in triangles
ABC and T have parallel asymptotes. They must meet at two other finite points collinear
with K that lie on the Thomson cubic. It follows that these points are G−Ceva conjugate
points.

Figure 12 shows the line LO passing through X399 on the Stammler hyperbola and the
two related rectangular hyperbolas.

The tangent at O to the Stammler hyperbola is the Euler line in which case the two
hyperbolas are the Jerabek hyperbolas of ABC and T passing through O and K.
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Figure 12: Intersection of two isogonal transforms of a line through O

Naturally, when LO passes through one focus of the Steiner inellipse then the two
hyperbolas meet at the other focus.

3.4 Isogonal cubics with respect to T

Let P be a fixed point. The locus of M such that P , M and its isogonal conjugate M∗
T

are collinear is an isogonal pivotal cubic with respect to T . This cubic is also inscribed
in ABC if and only if it contains the infinite points of the altitudes of ABC since these
points are the isogonal conjugates of A, B, C with respect to T .

It follows that all such cubics form a pencil of cubics since they contain nine common
identified points. This pencil obviously contains the cubic decomposed into the circumcir-
cle and the line at infinity. It also contains K615 which is the unique other cubic invariant
under isogonality with respect to T .

K615 contains X2, X3, X4, X64, X154, X3424 and must pass through the in/excenters
of T , in particular the incenter X5373. See §4 below.

Figure 13 shows this cubic K615 and the Thomson cubic K002. The four in/excenters
of T are the intersections of two (dashed) diagonal rectangular hyperbolas.

The pencil also contains two special other cubics :
– the one passing through X6 which is a K0 (without term in xyz),
– the one passing through X376 which is a K+ (a cubic with three concurring asymp-

totes).

4 The Thomson triangle and the equiareality center X5373

Mowaffaq Hajja and Panagiotis T. Krasopoulos have studied (see [8]) the following
(slightly rephrased) problem. Let X be a point lying inside ABC and let XaXbXc be
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Figure 13: K615 and K002

its pedal triangle. For which X the three quadrilaterals such as AXcXXb have the same
area, obviously one third of the area of ABC ?

The aforementioned paper supposes that ABC is an acute triangle and that X must
be inside ABC. The authors only find one point namely the center X5373 in [6] but they
do not provide a construction. They do not consider a more general configuration, leaving
the problem open.

We will investigate the situation under a different point of view and will show its
connexion with the Thomson triangle. In the sequel, all the areas are algebraic and their
signs are chosen with respect to the orientation of the reference triangle ABC.

We first take X inside an acute triangle ABC in which case the vertices Xa, Xb, Xc

of its pedal triangle lie on the sides of ABC.
In such case, the area of each quadrilateral is the sum of the areas of two rectangular

triangles. For example, [AXcXXb] = [AXcX ] + [XXbA] where [...] denotes an area. This
rewrites as [AXcXXb] = [AXcX ]− [AXbX ] for a better symmetry in the notations.

Let α(X) = [AXcXXb], β(X) and γ(X) being defined likewise. Let ∆ be the area of
ABC. See figure 14.

After some easy computations we obtain the following propositions.

Proposition 8 α(X) = ∆/3 if and only if X lies on a rectangular hyperbola denoted hA.

hA has its center at A. Two other rectangular hyperbolas hB, hC are defined likewise.
These three hyperbolas belong to a same pencil and have four common points forming an
orthocentric system. See figure 15.

Proposition 9 β(X) = γ(X) if and only if X lies on a rectangular hyperbola denoted
HA.

HA has its center at the A−vertex of the circumcevian triangle of the Lemoine pointK.
Two other rectangular hyperbolas HB, HC are defined likewise. These three hyperbolas
belong to the same pencil as the one mentioned above. See figure 16.
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Figure 14: Three quadrilaterals

A

B C

hA

hB

hC

Figure 15: Three hyperbolas hA, hB , hC

It is easy to verify that

Proposition 10 The six rectangular hyperbolas hA, hB, hC, HA, HB, HC are members
of the pencil of diagonal rectangular hyperbolas with respect to T .

Hence we have
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Figure 16: Three hyperbolas HA, HB, HC

Proposition 11 α(X) = β(X) = γ(X) if and only if X is one of the four in/excenters
of the Thomson triangle T .

and finally

Proposition 12 X5373 in the incenter of the Thomson triangle T .

Figure 17 shows X5373 on K615 in an acute triangle.

Remark : Recall that X5373 and the excenters of T lie on the diagonal rectangular
hyperbolas we met in §1.6 which gives a conic construction of these points.
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Figure 17: X5373, K615 and K002

5 Appendix : tables of cubics

In this first table, we gather together all the circum-cubics passing through the vertices
of T we have met throughout the paper with some additional interesting examples. X
denotes the intersection of concurring asymptotes when the cubic is a K+.

cubic type centers on the cubic remarks

K002 pK X1, X2, X3, X4, X6, X9, X57, X223, X282, X1073,
X1249, etc

K167 pK X3, X6, X3167, X8770

K172 pK X3, X6, X25, X55, X56, X64, X154, X198, X1033, X1035,
X1436, X7037

K280 nodal spK X2, X6, X262, X378, X995, X1002, X1340, X1341, X5968,
X7757

node at G

K297 nodal X3, X6, X183, X956, X1344, X1345 , X3445, X5968 node at K

K581 stelloidal spK X2, X3, X4, X262 X = X5055

K615 spK, pK in T X2, X3, X4, X64, X154, X3424, X5373

K624 nK+
0 X6, X523, X2574, X2575 , X5968, X8905, X8106 X = G

K625 nK0 X6, X187, X511, X523, X690, X6137, X6138

K626 nodal X3, X25, X1073, X1384, X1617, X3167, X3420, X3426 node at O

K759 spK X2, X3, X4, X3431, X7607

The second table shows several non circum-cubics passing through the vertices of T .
Notes :
(1) : K078 is the McCay cubic K003 of T .
(2) : K463 is the focal cubic K187 of T .
(3) : K758 is the isogonal transform of the Thomson cubic K002 with respect to T .
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cubic type centers on the cubic / notes remarks

K078 stelloid X1, X2, X3, X165, X5373, X6194 / (1) X = X3524

K138 equilateral X2, X6, X5652

K463 focal X2, X3, X15, X16, X30, X110,X5463, X5464 / (2) focus X110

K609 X1, X2, X3, X20,

K703 nK in T ?

K727 X2, X3, X7712

K758 central X2, X3, X154, X165, X376, X3576 / (3) X = X3
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