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Abstract

We explore the configurations deduced from the barycentric coordinates of a given point and define
the notion of bicentric triples, bicentric conics, bicentric cubics.

1 Playing with barycentric coordinates

Let P = (p : q : r) be a point distinct of the centroid G not lying on the sidelines of the reference triangle
ABC (i.e. such that pqr 6= 0) and let tP = (1/p : 1/q : 1/r) be its isotomic conjugate.

1.1 Related points on the sidelines of ABC

The cevian triangle of P is denoted by PaPbPc with :

Pa = (0 : q : r), Pb = (p : 0 : r), Pc = (p : q : 0)

The cevian triangle of tP is denoted by tP t
aP

t
bPc with :

tPa = (0 : r : q), tPb = (r : 0 : p), tPc = (q : p : 0)

The parallels to AB at Pb and to AC at Pc meet BC at Pba and Pca respectively and, similarly, the
parallels to AB at tPb and to AC at tPc meet BC at tPba and tPca respectively. The coordinates of these
four points are :

Pba = (0 : p : r), Pca = (0 : q : p), tPba = (0 : r : p), tPca = (0 : p : q)

The corresponding points on the other sidelines of ABC are defined likewise :

Pcb = (p : 0 : q), Pab = (q : 0 : r), tPcb = (q : 0 : p), tPab = (r : 0 : q)

Pac = (r : q : 0), Pbc = (p : r : 0), tPac = (q : r : 0), tPbc = (r : p : 0)

We obtain a total of eighteen points on the sidelines corresponding to all the possible permutations of
two non-zero coordinates taken among p, q, r.

1.2 Permuting coordinates

We can now construct all the points obtained from P by permuting its coordinates.

• When one coordinate only stays at its place, we get the three following points :

Pp = (p : r : q), Pq = (r : q : p), Pr = (q : p : r)

where Pp = BPcb ∩ CPbc, Pq = CPac ∩APca, Pr = APba ∩BPab. Note that Pp is also the intersection of the
line AtP with the parallel at P to the sideline BC.

Their isotomic conjugates are obtained in the same way :

tPp = (1/p : 1/r : 1/q) = (qr : pq : pr),
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tPq = (1/r : 1/q : 1/p) = (pq : pr : qr),

tPr = (1/q : 1/p : 1/r) = (pr : qr : pq)

with tPp = BtPcb ∩ CtPbc for example.

• When none of the three coordinates stays in place, we obtain the two points :

Q1 = (q : r : p), Q2 = (r : p : q)

with Q1 = A tPr ∩B tPp ∩ C tPq and Q2 = A tPq ∩B tPr ∩ C tPp.
These points Q1, Q2 are called the bicentric mates of P and P , Q1, Q2 is called a bicentric triple.

Note that the centroid of a bicentric triple is always the centroid G of ABC.
The line Q1Q2 is parallel to the trilinear polar of tP and the midpoint of Q1Q2 is the complement of P .
Their isotomic conjugates are

tQ1 = (1/q : 1/r : 1/p) = (pr : pq : qr),

tQ2 = (1/r : 1/p : 1/q) = (pq : qr : pr).

These two points are the perspectors of triangles ABC and PbaPcbPac, ABC and PcaPabPbc respectively.
They are sometimes called the Brocardians of P .

Remark : the five triangles ABC, PpPqPr,
tPp

tPq
tPr, PQ1Q2,

tP tQt
1Q2 have the same centroid G and

the three vertices of each triangle form a bicentric triple.
Similarly, the eighteen points above also form six bicentric triples and the six corresponding triangles

have the same centroid G.

• We obtain some other points by intersecting other related lines :

Rp = BPr ∩ CPq = (qr : q2 : r2),

Rq = CPp ∩APr = (p2 : pr : r2),

Rr = APq ∩BPp = (p2 : q2 : pq),

and similarly their isotomic conjugates

tRp = BtPr ∩ CtPq = (qr : r2 : q2),

tRq = CtPp ∩AtPr = (r2 : pr : p2),

tRr = AtPq ∩BtPp = (q2 : p2 : pq).

Note that the triangles ABC and RpRqRr are perspective at the point P
2 = (p2 : q2 : r2), the barycentric

square of P .

1.3 Perspectivities

This configuration leads to a set of triply perspective triangles where the three perspectors are known
points of the figure. This is summarized in the following table.

triply perspective triangles and their three perspectors

ABC and PpPqPr
tP,tQ1 and tQ2

ABC and tPp
tPq

tPr P,Q1 and Q2

ABC and PQ1Q2
tPp,

t Pq and tPr

ABC and tP tQ1
tQ2 Pp, Pq and Pr

PpPqPr and RpRqRr
tQ1,

tQ2 and (p2 + qr : q2 + rp : r2 + pq)
tP t

pP
t
qPr and tRt

pR
t
qRr Q1, Q2 and (p+ qr/p : q + rp/q : r + pq/r)
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1.4 Special cases

1.4.1 P = K (Lemoine point)

This is the Brocard configuration : tQ1 and tQ2 are the Brocard points usually denoted by Ω1 and Ω2

and PpPqPr is the first Brocard triangle A1B1C1.

1.4.2 P = H (orthocenter)

This is the configuration cited in [5] where tQ1 and tQ2 are called “cosine orthocenters” (denoted by σ1
and σ2 in the Tucker paper).

1.4.3 P = I (incenter)

In this case tQ1 and tQ2 are sometimes called the Jerabek points.

2 Related conics

2.1 Steiner Conics

The six points P,Q1, Q2, Pp, Pq, Pr lie on an ellipse E1 centered at G homothetic to the Steiner circum-
ellipse with equation :

(qr + rp+ pq)(x2 + y2 + z2) = (p2 + q2 + r2)(yz + zx+ xy)

Their isotomic conjugates tP,tQ1,
tQ2,

t Pp,
t Pq,

t Pr lie on another ellipse E2 centered at G homothetic to
the Steiner circum-ellipse with equation :

pqr(p+ q + r)(x2 + y2 + z2) = (q2r2 + r2p2 + p2q2)(yz + zx+ xy)

Note that these two ellipses are bicentric conics since any point M = (x : y : z) on one ellipse has its
two bicentric mates M1 = (z : x : y) and M2 = (y : z : x) on this same ellipse. See figure 1.

2.2 Brocard Conics

The six points P,tQ1,
tQ2, Pp, Pq, Pr lie on a conic B1 centered at Ω3 = [p(2qr + p(q + r − p)) ::]. This

conic also contains G/P , the center of the circumconic with perspector P . Its equation is :

qrx2 + rpy2 + pqz2 = p2yz + q2zx+ r2xy.

B1 is a circle if and only if P = K (Lemoine point) and this circle is the Brocard circle with diameter
OK and center X182.

Similarly, the isotomic conjugates tP,Q1, Q2,
t Pp,

t Pq,
t Pr of the six points above also lie on a conic B2

centered at Ω4 = [q2r2(qr − p(q + r + 2p)) ::].
Its equation is :

pqr(px2 + qy2 + rz2) = q2r2yz + r2p2zx+ p2q2xy.

This conic is the Brocard circle if and only if P = X76.
These two conics are also bicentric conics. See figure 2.

These two conics B1 and B2 generate a pencil that contains a circle if and only if P lies either on :

1. the line at infinity in which case B1 decomposes into the line at infinity and a line,

2. the Steiner ellipse in which case B2 decomposes into the line at infinity and a line,

3. the pivotal cubic K659 = pK(G,K). In this latter case, the axes of the two conics have the same
directions.
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Figure 1: The Steiner Conics
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Figure 2: The Brocard Conics

2.3 Three other conics

• Pa, Pb, Pc,
t Pa,

t Pb,
t Pc lie on the bicevian conic C1 = C(P,t P ) with equation :

pqr(x2 + y2 + z2) =
∑

cyclic

p(q2 + r2)yz
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C1 is a circle if and only if the cyclocevian conjugate of P coincide with the isotomic conjugate tP of
P . There are six such points which are the cevian O-points of Table 39 in [1].

• Pab, Pba, Pbc, Pcb, Pca, Pac lie on the bicevian conic C2 = C(tQ1,
tQ2) with equation :

∑

cyclic

qrx2 =
∑

cyclic

(p2 + qr)yz

which is a circle if and only if P = X194.

• Similarly tPab,
t Pba,

t Pbc,
t Pcb,

t Pca,
t Pac lie on the bicevian conic C3 = C(Q1, Q2) with equation :

pqr(px2 + qy2 + rz2) =
∑

cyclic

qr(p2 + qr)yz

which is a circle if and only if P is the isotomic conjugate X2998 of X194.

Note that these three conics are bicentric conics again. See figure 3.

A

B C

tP

Pb

P

Pa

Pc

tPa

tPb

tPc Q1

Q2

C1 C2

G

tQ1

tQ2
Pab

Pcb

Pbc

PcaPba

Pac

Figure 3: The Conics C1 and C2

3 Tucker cubics

3.1 A locus

• Let λ be a real number and let us denote by S the area of triangle ABC.
An easy computation shows that the locus of point M = (x : y : z) such that the area of the cevian

triangle of M is constant and equal to λS is an isotomic non-pivotal circum-cubic T (λ) with equation :

∑

cyclic

x(y2 + z2) + 2

(

1−
1

λ

)

xyz = 0
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or equivalently :

λ
∑

cyclic

x(y2 + z2) + 2(λ− 1)xyz = 0,

or again :

(x+ y + z)

(

1

x
+

1

y
+

1

z

)

= 1 +
2

λ
.

Its root is the centroid G.
The equations above show that all these cubics are in a pencil of circum-cubics and also that each cubic

is a bicentric cubic since any point M = (x : y : z) on the cubic has obviously its two bicentric mates
M1 = (z : x : y) and M2 = (y : z : x) on the cubic.

• Consider the three conics γA, γB , γC with equations :

γA : λ(x+ y)(x+ z)− x2 = 0,

γB : λ(y + z)(y + x)− y2 = 0,

γC : λ(z + x)(z + y)− z2 = 0.

γA passes through B, C and is centered on the median AG at the image of A in the homothety with center

G, ratio
−2(λ− 1)

λ− 4
. γA is tangent at B, C to the sidelines of the antimedial triangle.

γA, γB, γC are parabolas if and only if λ = 4.
T (λ) is the jacobian of these three conics i.e. the locus of M such that the polar lines of M in the three

conics concur at N which also lies on the cubic.

• The same locus is easily defined from a given point P = (p : q : r) as the locus of point M = (x : y : z)
such that the (algebraic) areas of the cevian triangles of M and P are equal.

The equation given above is rewritten under the form :

pqr
∑

cyclic

x(y2 + z2) = xyz
∑

cyclic

p(q2 + r2)

⇐⇒ pqr
∑

cyclic

x2(y + z) = xyz
∑

cyclic

p2(q + r),

the cubic being then denoted by T (P ) and called the P -Tucker cubic since it generalizes a cubic found
by R. Tucker in [5].

In this case, the Tucker cubic T (P ) is clearly the non-pivotal isotomic cubic nK(G,G,P ).

Remark 1 : since two isotomic conjugates P and tP have equal area cevian triangles, we have T (P ) =
T (tP ).

Remark 2 : the third point of T (P ) on the line through P and tP is Q and the tangents to the cubic at
P and tP pass through tQ. The coordinates are :

Q =
p2 − qr

p(q − r)
: · · · : · · · ; tQ =

p(q − r)

p2 − qr
: · · · : · · · .

Remark 3 : the locus of point M = (x : y : z) such that the (algebraic) areas of the cevian triangles of
M and P are opposite is also a cubic T ′(P ) with equation :

pqr
∑

cyclic

x(y2 + z2) = xyz





∑

cyclic

p(q2 + r2)− 2
∏

cyclic

(q + r)



 .

This cubic is also a non-pivotal isotomic cubic with pole and root G.
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3.2 Immediate properties

3.2.1 Points on the curve

It is obvious that T (P ) passes through the eighteen following points :
– the vertices A,B,C already mentionned.
– the points at infinity of the sidelines of ABC which are inflexion points since the trilinear polar of the

root G is the line at infinity.
– P and its isotomic conjugate tP .
– the ten points obtained from P and tP by permuting their coordinates namely Q1, Q2, Pp, Pq, Pr and

their isotomic conjugates tQ1,
tQ2,

t Pp,
t Pq,

t Pr.
Recall that all these points come in triples formed by one point and its two bicentric mates.

3.2.2 Asymptotes

They are obviously inflexional and parallel to the sidelines of ABC. They form a triangle homothetic to

ABC at G. The ratio of homothety is
−2(λ− 1)

λ+ 2
.

3.2.3 Tangents

• The tangent at A,B,C are parallel to the sidelines of ABC and are the sidelines of the antimedial
triangle. From this, T (P ) is tritangent to the Steiner circum-ellipse at these points.

• Each median meets T (P ) again at two points and the tangents at them are also parallel to the
sidelines of ABC, this coming from the fact that the polar conic of the point at infinity of a sideline of ABC
degenerates into an asymptote and the relative median.

3.2.4 Polar conic of the centroid G

The polar conic of the centroid G is generally an ellipse homothetic of the Steiner ellipse under the

homothety with center G, ratio

√

4λ− 1

λ− 1
. Its equation is :

λ
∑

cyclic

x2 + (3λ− 1)
∑

cyclic

yz = 0

or
λ
∑

cyclic

(x2 − 2yz) + (5λ− 1)
∑

cyclic

yz = 0

which clearly shows that this polar conic belongs to a pencil of concentric ellipses generated by the
Steiner circum-ellipse and in-ellipse. It degenerates when λ = 1 (into the line at infinity counted twice) or
when λ = 1/4 (into two imaginary lines through G and the infinite points of the Steiner ellipse). When
λ = 0 it is the Steiner circum-ellipse and when λ = 1/5 it is the Steiner in-ellipse. With λ = 1/3, we find
the imaginary diagonal conic with equation x2 + y2 + z2 = 0.

When λ ∈ [0; 1/4[ ∪ ]1;+∞[, the polar conic is a real non-degenerate ellipse. Furthermore, if λ ∈]1;+∞[
the polar conic of G meets the cubic at six real points hence it is possible to draw six real tangents from G
to the cubic. See for example the Tucker-Poncelet cubic below.

3.3 Construction of T (P )

The parallel to AC at P intersects BC at B′ and the parallel to AB at P intersects BC at C ′.
For any point m on the line BC, let us denote by m′ its homologue under the involution (on BC) which

swaps B,B′ and C,C ′.
An easy way to realize the construction of m′ is the following : the line AP intersects again the circle

ABB′ at E and the circle AEm meets BC again at m′.
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The conic through A,B,C,t P,tm (which is the isotomic conjugate of the line Pm) intersects the line
Pm′ at two points on the cubic T (P ).

3.4 Prehessians of T (P )

Every cubic T (P ) has three prehessians and one of them is always real with a remarkably simple equation,
namely :

(q + r)(r + p)(p+ q) (x3 + y3 + z3) = 3pqr (y + z)(z + x)(x+ y).

It is interesting to observe that the mapping that sends any point of the plane to the center of its polar
conic in this prehessian is the isotomic conjugation.

4 Some special examples of T (P )

Recall that T (P ) is actually the non-pivotal isotomic cubic nK(G,G,P ).

4.1 The “original” Tucker cubic K011

This cubic is T (H) (or T (tH) where tH = X69) and is the one quoted in [5]. It contains X4, X69, X877,
X879.

4.2 The Tucker-Brocard cubic K012

This is T (K) (or T (tK) where tK = X76) passing through the Brocard points and the vertices of the
first Brocard triangle. It contains X6, X76, X880, X882.

4.3 The Tucker-Gergonne-Nagel cubic K013

This is T (X7) or T (X8) where X7, X8 are the Gergonne and Nagel points respectively. It contains X7,
X8, X883, X885.

4.4 The Tucker-Jerabek cubic K014

This is T (I) (or T (tI) where tI = X75) passing through the Jerabek points. It contains X1, X75, X874,
X876.

4.5 T (P ) with concuring asymptotes K016

There is one and only one non-degenerate T (P ) with concuring asymptotes (at G) obtained when λ = 1
: this is the locus of point M such that the area of the cevian triangle of M is equal to S.

4.6 The G−Tucker cubic K015

T (P ) is unicursal if and only if it passes through one and only one fixed point of the isotomic conjugation.
When this fixed point is one of the vertices of the antimedial triangle, the cubic decomposes into the union
of the sidelines of this triangle.

Hence there is one and only one unicursal Tucker cubic and it is T (G) with a singularity at G : T (G) is
a conico-pivotal isocubic with pivotal-conic the Steiner circum-ellipse i.e. for any point M on the curve, the
line through M and its isotomic conjugate tM envelopes the Steiner circum-ellipse. The equation of T (G)
is :

∑

cyclic

x(y2 + z2)− 6 xyz = 0
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4.7 The Tucker-Poncelet cubic K327

This is T (2), locus of point M such that the area of the cevian triangle of M is 2S. It is an example of
Tucker cubic such that six real tangents can be drawn through G to the cubic. See figure 4.

A

B C

G

B’

A’

polar conic of G

C’

Figure 4: The Tucker-Poncelet cubic K327

5 A family of related cubics

5.1 The cubics V(P )

Recall that the equation of the Tucker cubic T (P ) can be written under the form

pqr
∑

cyclic

x2(y + z)− xyz
∑

cyclic

p2(q + r) = 0.

A permutation of the plus and minus signs in this equation gives

pqr
∑

cyclic

x2(y − z) + xyz
∑

cyclic

p2(q − r) = 0, (1)

or equivalently
∏

cyclic

p(y − z) +
∏

cyclic

(q − r)x = 0, (2)

and this leads us to a new bicentric cubic V(P ) that contains many points related with T (P ). This cubic
is a bicentric cubic again and it is in fact the pseudo-pivotal cubic psK(G,G,t P ) in [2].

Indeed, V(P ) and T (P ) have nine identified common points namely A, B, C, tP , Pp, Pq, Pr,
tQ1 and

tQ2. Note that the tangents at A, B, C are the medians of ABC.
Recall that T (P ) is a self-isotomic non-pivotal cubic. On the other hand, the isotomic transform of V(P )

is V(tP ) with equation
∏

cyclic

p(y − z)−
∏

cyclic

(q − r)x = 0. (3)
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which is clearly the pseudo-pivotal cubic psK(G,G,P ). See [2] for further properties. In particular, V(P )
is globally unchanged under two inverse transformations which are the product in either ways of isotomic
conjugation and G−Ceva conjugation.

Moreover, V(P ) also contains :

• the midpoints Ma, Mb, Mc of ABC.

• G/P (the G−Ceva conjugate of P , the center of the circumconic C(P ) with perspector P ) and its two
bicentric mates.

• G c©P (the G−cross conjugate of P ) and its two bicentric mates.

• tQ0, the tangential of tP , the intersection of the lines tQ1,
tQ2 and G/P,G c©P . See figure 5.

A

B C

tP

Pp

Ma

V(P)

MbMc

G©P

Pq

Pr

T(P)

tQ1

tQ2
P

tQ0 G/P

Figure 5: V(P ) and T (P )

• the infinite points of the pivotal cubic K1 with pole P and pivot the anticomplement of tP i.e. the
P−Ceva conjugate of G. This easily derives from the following form of equation (1) :

∑

cyclic

(−qr + rp+ pq)x(ry2 − qz2) = (x+ y + z)
∑

cyclic

p2(q − r)yz.

V(P ) and K1 meet at six other points on the circumconic C1(P ) with equation

∑

cyclic

p2(q − r)yz = 0.

These points are A, B, C, G c©P and two points P1, P2 on the line G,t P . Note that

– C1(P ) also contains P , the complement of tP and P 2, the barycentric square of P ,

– K1 is a cubic with three concurring asymptotes. See figure 6. One remarkable thing to observe is
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Figure 6: V(P ) and K1

that the asymptotes of V(P ) are inflexional. Indeed, the hessian cubic of V(P ) has equation

∏

cyclic

(q − r)





∏

cyclic

p(y − z) +
∏

cyclic

(q − r)x





= 4p2q2r2(x+ y + z)(x2 − xy + y2 − xz − yz + z2),

where the left hand side represents the equation of V(P ) itself and where (x2−xy+y2−xz−yz+z2) = 0
is the union of the two imaginary lines passing through G and the infinite points of the Steiner ellipse.

It follows that the poloconic of the line at infinity must be an ellipse with center G, homothetic to the
Steiner ellipse and inscribed in the triangle formed by the asymptotes.

• the common points A, B, C, M1, M2, M3 of the Steiner ellipse and the pivotal cubic K2 with pole P
and pivot G/P . The tangents at these six points concur at G since the polar conic of G in V(P ) is
the Steiner ellipse. Note that this latter cubic has three asymptotes concurring at G.

Furthermore, each asymptote of V(P ) is parallel to a line passing through one vertex of ABC and one
vertex of M1M2M3. See figure 7. V(P ) and K2 meet at three other points on the line P,G/P namely
G/P , P3, P4. See figure 8. This is obtained with another form of (1) :

∑

cyclic

p(−p+ q + r)x(ry2 − qz2) = (yz + zx+ xy)
∑

cyclic

qr(q − r)x.

• the common points of C(P ) and the pivotal cubic K3 with pole P and pivot tP . The three remaining
common points are tP and the two points P1, P2 on the line G,t P . See figure 9.

This is obtained with another form of (1) :
∑

cyclic

qrx(ry2 − qz2) = (pyz + qzx+ rxy)
∑

cyclic

p(q − r)x.
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Figure 7: V(P ) and its asymptotes
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Figure 8: V(P ) and K2

• the common points Ma, Mb, Mc, Ta, Tb, Tc of the inscribed Steiner ellipse and the complement K4

of the pivotal cubic K2 with pole P and pivot G/P . The three remaining common points are G/P
and the two intersections P3, P4 of the line P,G/P with the circumconic passing through G and tP ,
namely the isotomic transform of the line G,P .
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Figure 9: V(P ) and K3

Note that the three points Ta, Tb, Tc are the midpoints of M1M2M3.

This is also obtained with another form of (1) :

∑

cyclic

(2yz − x2)
∑

cyclic

qr(q − r)x = 4(y − z)(z − x)(x− y)−
∑

cyclic

qr(q − r)x(−x+ y + z)2,

where
4(y − z)(z − x)(x− y)−

∑

cyclic

qr(q − r)x(−x+ y + z)2 = 0

is the equation of K4. See figure 10.

Construction of V(P ) :

Let
– HP be the diagonal conic through P , G/P , the vertices of the anticevian triangles of P and G/P ,
– LP be a variable line through P meeting HP again at Q,
– CP be the isotomic transform of LP .
The line Q,G/P meets CP at two points of V(P ).

Example : the Brocard-van Tienhoven cubic V(K) = K512

This cubic was brought to my attention by Chris van Tienhoven in a private message.

It is probably the most interesting cubic V(P ) since it is closely related to the Brocard geometry and

naturally to the Tucker-Brocard cubic K012.
Indeed, these two cubics contain the Brocard points Ω1, Ω2, the vertices of the first Brocard

triangle, the third Brocard point X76, O = G/K and X3224 = G c©K. See figure 11.

Furthermore, V(K) meets

13



A

B C

G

K4

tP

G/P

P1

Ma

V(P)

Mb
Mc

P2

G©P

P3

P4

M1

M2

M3
T1

T2 T3

Figure 10: V(P ) and K4
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G Steiner

ellipse

Figure 11: The Brocard-van Tienhoven cubic and K012

– the line at infinity at the same points as pK(X6, X194) = K410,
– the Steiner ellipse at the same points as the McCay cubic K003,
– the circumcircle of ABC at the same points as pK(X6, X76) = K184. See figure 12.
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Figure 12: The Brocard-van Tienhoven cubic and K003, K184, K410

5.2 Pencils generated by V(P ) and T (P )

Recall that V(P ) and T (P ) have nine identified common points hence they generate a pencil
F(P ) of cubics passing through these nine points.

F(P ) contains several other remarkable cubics.

• one cubic V+(P ) without term in xyz (a K0 cubic) which is at the same time a K+ i.e. having
three concurring asymptotes, here in G. See figure 13.

The asymptotes of V+(P ) are also inflexional. Indeed, the hessian cubic of V+(P ) has equation

(x+ y + z)(x2 − xy + y2 − xz − yz + z2) = 0

which we have already met above.

• one cubic V ′(P ) inscribed in the antimedial triangle GaGbGc. This also contains the anticom-
plement of the isotomic conjugate of the complement of P . The tangents at Ga, Gb, Gc pass
through G. See figure 14.

6 General bicentric circum-cubics

It is obvious that a bicentric circum-cubic Bu,v,w must have an equation of the form :

u (x2y + y2z + z2x) + v (xy2 + yz2 + zx2) + 4w xyz = 0,

where u, v, w are any three real (not all zero) numbers.

Note that Bu,v,w meets the sidelines of ABC at three points independent of w namely :
U = (0 : −v : u), V = (u : 0 : −v) and W = (−v : u : 0).

15



A

B C

tP

Pp

Ma

V(P)

MbMc

Pq

Pr

T(P)

tQ1

tQ2G

V+(P)

Figure 13: V+(P ), V(P ) and T (P )
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Figure 14: V ′(P ), V(P ) and T (P )

These points form a bicentric triple with centroid G and, moreover, they are the tangentials of
the vertices of ABC i.e. the tangents at A, B, C to Bu,v,w pass through U , V , W respectively.

More generally, for any point P on Bu,v,w, the triangle formed by P and its bicentric mates is
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inscribed in the cubic and rotates around G when P traverses the cubic.

The isotomic transform of Bu,v,w is clearly Bv,u,w and this shows that Bu,v,w is a self-isotomic cubic
if and only if u = v. These are the Tucker cubics. This is the only case when the points U , V , W
are collinear.

The points U , V , W are the vertices of a cevian triangle if and only if u + v = 0, and with w
suitably chosen, we obtain the cubics V(P ) seen above. In the particular case w = 0, we obtain
V+(P ).

6.1 Polar conic of the centroid

The polar conic Cu,v,w of G with respect to Bu,v,w can be written under the form :

(u+ v)(x+ y + z)2 + 4w(yz + zx+ xy) = 0, (4)

showing that it is generally an ellipse with center G homothetic to the Steiner ellipse. This can
be real or not, proper or degenerate.

The ratio ρ of homothecy is given by ρ2 =
3u+ 3v + 4w

4w
.

Naturally Bu,v,w meets Cu,v,w at six points with tangents concurring at G. The equation (4) and
the ratio ρ clearly confirm that :

• when u+ v = 0, Cu,v,w is the Steiner ellipse (ρ = 1),

• when w = 0, Bu,v,w has three inflexional asymptotes concurring at G since Cu,v,w is the line at
infinity counted twice (ρ = ∞),

• when u+ v + w = 0, Cu,v,w is the Steiner in-ellipse (ρ = 1/2),

• when u+ v = 4w, Cu,v,w is the Steiner ellipse of the antimedial triangle (ρ = 2),

• when u+ v + 2w = 0, Cu,v,w is the diagonal conic x2 + y2 + z2 = 0 (ρ2 = −1/2).

Each condition above leads to a pencil of cubics such that the polar conic of G is the same for
any cubic in the pencil.

6.2 Bicentric circum-cubics passing through a given point

Let us now impose that the cubic Bu,v,w contains a given point P . It is clear from the general
equation above that the corresponding cubics now form a pencil passing through nine fixed points
forming three bicentric triples. These triples are A, B, C – P , Q1, Q2 – tPp,

tPq,
tPr.

Each cubic of the pencil can be characterized by a single parameter and, when this parameter
varies, the polar conic of G meets the corresponding cubic at six points lying on a same bicentric
circum-quintic Q(P ) that contains P , Q1, Q2,

tPp,
tPq,

tPr, the infinite points of the Steiner ellipse,
G, Ga, Gb, Gc, the anticomplement aP of P and its two bicentric mates.

This quintic has five asymptotes concurring at G. Note that the tangents at A, B, C, P , Q1, Q2,
tPp,

tPq,
tPr pass through G. See figure 15.

6.3 Examples

We conclude this paper with several selected examples and some additional remarks concerning
each particular situation..
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Figure 15: The bicentric circum-quintic Q(P )

6.3.1 Example 1

When Cu,v,w is the Steiner ellipse, the cubic Bu,v,w must pass through the midpoints of ABC and
thus the tangents at A, B, C must be the medians of ABC. Bu,v,w meets the Steiner ellipse at three
other points A′, B′, C ′ forming a bicentric triple with centroid G.

All these cubics form a pencil and the cubic that passes through the given point P = (p : q : r)
has equation :

∑

cyclic

px(ry − qy)(qy + rz) = 0.

It also contains the G−Ceva conjugate of tP and the G−crossconjugate of tP (equivalently the
isotomic conjugate of the G−Ceva conjugate of P ) and the four corresponding bicentric mates. The
tangential of P is the third point on the line passing through the two former points.

The figure 16 shows the cubic that contains X9, X75, X87 and naturally their six bicentric mates.

6.3.2 Example 2

When Cu,v,w is the Steiner in-ellipse, the cubic Bu,v,w passing through P meets this ellipse at six
(real or not) points with their tangents passing through G. These six points form two other bicentric
triples.

The figure 17 shows the cubic that contains X76, the Brocard points, the vertices of the first
Brocard triangle.
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Figure 16: Bu,v,w with polar conic the Steiner ellipse
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Figure 17: Bu,v,w with polar conic the Steiner in-ellipse

6.3.3 Example 3

When Cu,v,w is the union of the two imaginary lines passing through G and the infinite points of
the Steiner ellipse, the cubic Bu,v,w is an acnodal cubic with G as isolated node on the curve.
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The figure 18 shows the cubic that contains X76, the Brocard points, the vertices of the first
Brocard triangle.

A

B C

K

O

X76

A1
B1

C1

G

Ω1

Ω2

Figure 18: Bu,v,w with a degenerated polar conic

6.3.4 Example 4

When Cu,v,w is the Steiner ellipse of the antimedial triangle GaGbGc, the cubic Bu,v,w passing
through P also contains Ga, Gb, Gc and naturally Q1, Q2,

tPp,
tPq,

tPr, these nine points forming
three bicentric triples. Figure 19 shows the cubic that contains X69.
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Figure 19: Bu,v,w with polar conic the Steiner ellipse of the antimedial triangle

7 Generalized Tucker cubics

The Tucker cubics T (P ) = nK(G,G, P ) we met above are deeply related to the centroid G of
triangle ABC through isotomic conjugation and therefore to the line at infinity, the trilinear polar
of G that contains the three real inflexion points of T (P ). The corresponding cubics V(P ) have the
same relationship with G since they are pseudo-pivotal cubics with pseudo-pole and pseudo-pivot G.
See [2] for more details. Recall that both cubics are bicentric cubics.

In this section, G is replaced by any other point Z not lying on one sideline of ABC and the line
at infinity by the trilinear polar LZ of Z meeting the sidelines of ABC at U , V , W . The isotomic
conjugation is now the isoconjugation with fixed points Z and its three harmonic associates. The
isoconjugate of any point M is still denoted by tM .

All the points defined at the beginning are here defined similarly since the parallels to the sidelines
of ABC are replaced by lines intersecting on LZ . More precisely, the parallels at M to BC, CA, AB
are now the lines UM , VM , WM respectively.

The Z−Tucker cubic T (Z, P ) = nK(Z2, Z, P ) is now :

(x

u
+

y

v
+

z

w

)

(

u

x
+

v

y
+

w

z

)

=
(p

u
+

q

v
+

r

w

)

(

u

p
+

v

q
+

w

r

)

⇐⇒ pqr
∑

cyclic

vwx2(wy + vz)− xyz
∑

cyclic

p2vw(wq + vr) = 0,

and the corresponding cubic V(Z, P ) = psK(Z2, Z,t P ) is :

pqr
∑

cyclic

vwx2(wy − vz) + xyz
∑

cyclic

p2vw(wq − vr) = 0

⇐⇒ pqr
∏

cyclic

(wy − vz) + xyz
∏

cyclic

(wq − vr) = 0,
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where Z2 denotes the barycentric square of Z.
Note that these two cubics are not bicentric cubics anymore.
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