Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

Let W = (p : q : r) be a pole of isoconjugation and P* the W-isoconjugate of point P.

The cevian triangle of P* and ABC are orthologic if and only if P lies on pK(W^2,W÷H) where W^2 is the barycentric square of W and W÷H = U is the barycentric quotient of W and H i.e. W^2 = (p^2 : q^2 : r^2) and U = (p SA : q SB : r SC).

Any such cubic is the transform of the Lucas cubic K007 in the isoconjugation with pole W.

pK(W^2,W÷H) contains W and its three harmonic associates and its equation is :

Naturally, the Lucas cubic K007 is the simplest example of such cubic with W = G, W^2 = G, U = X(69).

When W = K, we obtain K172 with W^2 = X(32) and U = O.

The following table gives a selection of pK(W^2,U) with centers denoted i for X(i). P refers to Clark Kimberling's Z(U,P) cubics.

W

W^2

U

P

cubic

centers on the cubic

1

6

63

1

K343

1, 9, 19, 40, 57, 63, 84, 610, 1712, 2184

2

2

69

31

K007

2, 4, 7, 8, 20, 69, 189, 253, 329, 1032, 1034

4

393

2

255

 

2, 4, 278, 281, 393, 1249

6

32

3

75

K172

3, 6, 25, 55, 56, 64, 154, 198, 1033, 1035, 1436

7

279

348

1253

 

2, 7, 278, 279, 347, 348, 1440

8

346

345

1106

 

2, 8, 280, 281, 345, 346

9

220

78

269

 

 

10

594

306

849

 

10, 226, 306, 1826, 2321

19

2207

1

326

 

1, 19, 33, 34, 204, 207, 1096, 2331

31

1501

48

561

 

 

37

1500

72

757

 

 

57

1407

77

200

 

 

63

394

326

1096

 

1, 63, 77, 78, 326

75

76

304

560

 

75, 85, 92, 304, 309, 312, 322

100

1252

1332

244

 

 

513

1015

905

765

 

 

523

115

525

1101