Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

A cubic (K) = cK(#X1, P) is an isogonal nodal conico-pivotal cubic. See Special Isocubics ยง8 for general properties.

For any M on (K), its isogonal conjugate M* also lies on (K) and the line MM* (when defined) is tangent to a conic called the pivotal conic (PC) of (K). Here, (PC) is inscribed in the excentral triangle for any P.

(K) meets the sidelines of ABC again at U, V, W on the trilinear polar (L) of the root P and then (PC) is also inscribed in the triangle bounded by the lines AU, BV, CW.

M and M* are then conjugated with respect to a fixed circle (C) passing through X(1) which is orthogonal to the circles with diameters AU, BV, CW.

X(1) is a node on (K) and the nodal tangents are the tangents drawn from X(1) to (PC).

Let (I) be the circum-conic with perspector X(1) and center X(9), passing through X(88), X(100), X(162), X(190), X(651), X(653), X(655), X(658), X(660), X(662), X(673), X(771), X(799), X(823), X(897), X(1156), X(1492), X(1821), X(2349), X(2580), X(2581), etc. (K) is acnodal (resp. crunodal) when P is interior (resp. exterior) to (I). When P lies on (I), (K) splits into a line and a circum-conic.

***

Special cubics (K)

โ€ข (K) is equilateral if and only if P = X(4383) and then it is K085.

โ€ข (K) is a K0 (no term in x y z) if and only if P lies on the antiorthic axis, the trilinear polar of X(1). In this case, it is the X(1)-Hirst inverse of the circum-conic with perspector P and also the X(1)-line conjugate of the bicevian conic C(X1, P*).

โ€ข (K) is circular if and only if P lies on the trilinear polar of X(7). In this case, the nodal tangents are perpendicular and the singular focus F lies on (K) and on the circumcircle (O). Hence (K) is a strophoid. (PC) is a parabola whose focus is the reflection of X(1) in F and whose directrix is the orthic line of (K) i.e. the parallel at X(1) to the real asymptote of (K). See CL003 for further geometric properties.

***

A construcion of (K)

(K) is the image of the circum-conic (I) under the transformation ๐›•P which is described in page K1065.

With P = u : v : w, this transformation is given by ๐›•P : X = x : y : z โ†’ X' = x^2 (w y - v z) : y^2 (u z - w x) : z^2 (v x - u y).

 

The following table gives a selection of these cubics cK(#X1, P). The red point is the singular focus of a strophoid.

P

cubic

X(i) on the cubic for i =

type / note

650

K040

1, 105, 243, 296, 518, 1155, 1156, 2651, 2652, 5205, 7061, 9432, 12008, 14189, 14190, 14191, 14192, 14193, 14194, 14195, 14196, 14197, 14198, 14199, 14200, 14201, 14202, 14203, 14204

Strophoid, cK0, note 4

4383

K085

1, 23830, 23831, 23832, 23833, 23834, 23835, 23836, 23837

cK60

514

K086

1, 36, 80, 106, 519, 1323, 1785, 1795, 4845, 5127, 5209, 5526, 5620, 7343

Strophoid

513

K137

1, 44, 88, 239, 241, 292, 294, 1931, 9278

cK0

10015

K165

1, 3, 4, 952, 953, 3109, 6790, 14260, 14887

Strophoid

661

K221

1, 240, 293, 896, 897, 1757, 1758, 1929, 1966, 1967, 2648, 17763, 17954, 17955, 17956, 17957, 17958, 17959, 17960, 18028

cK0

1

K228

1, 1022, 1023

note 1

665

K359

1, 1083, 3110, 5091, 14665, 14839, 14947

Strophoid

14543

K383

1, 2, 3, 4, 6, 3945

see CL061

57

K407

1, 23703, 23704, 23705, 23706, 23838

see CL046

2617

K457

1, 19, 63, 3375, 3376, 3377, 3378, 3383, 3384, 3400, 3401, 3402, 3403, 3404, 3405, 3408, 3409, 21061

 

101

K588

1, 10, 58, 1794, 1838, 3864, 3865, 4792, 6212, 6213, 10471, 10481, 10482, 10563

 

6

K635

1, 876, 885, 2283, 3573, 23343, 23352, 23353, 23354, 23355

 

1633

K689

1, 2, 6, 241, 294, 948, 949, 2303, 6203, 6204, 7347, 7348

see CL061

108

K1073

1, 219, 222, 278, 281, 1172, 1214, 6212, 6213

 

3732

K1075

1, 3, 4, 218, 277, 1010, 1245, 1780, 3494, 3502, 8481, 8482, 8926, 8947, 8949

 

652

K1076

1, 1936, 1937, 2635, 2659, 2660, 23691, 23692, 23693, 23694, 23695, 23707

cK0

109

 

1, 9, 57, 226, 284, 3687, 8072, 8073

 

649

 

1, 238, 291, 899, 2107, 2669, 9364, 9365

cK0

664

 

1, 8, 56, 220, 225, 279, 283, 18798, 18799

 

1783

 

1, 3, 4, 28, 72, 6212, 6213, 17170

 

1983

 

1, 993, 994, 5692, 5902, 7951, 9275, 15175

 

3570

 

1, 2, 6, 31, 75, 1403, 2276, 7155, 14621

 

4369

 

1, 740, 741, 5018, 5143, 5524, 7281, 7312, 8481, 8482

Strophoid, note2

4551

 

1, 9, 57, 3179, 6212, 6213, 7150, 11679, 17185, 18798, 18799

 

4554

 

1, 200, 269, 314, 1402, 8947, 8949, 18798, 18799

 

14838

 

1, 484, 758, 759, 3065

Strophoid, note 3

note 1 : K228 is a circum-conico pivotal cubic. (PC) is the circum-ellipse (I) with perspector X(1) mentioned above.

note 2 : the nodal tangents are parallel to the asymptotes of the Kiepert hyperbola.

note 3 : the nodal tangents are parallel to the asymptotes of the Jerabek hyperbola.

note 4 : the nodal tangents are parallel to the asymptotes of the Feuerbach hyperbola.