Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

A MacBeath cubic is a circum-cubic which passes through the four foci of the MacBeath inconic, namely O, H and two imaginary isogonal points on the perpendicular bisector of OH and on the circum-conic passing through X(54), X(110) which is its isogonal transform.

Every MacBeath cubic MB(P) is a spK(P, X5) for some point P. See CL055 for spK cubics. All these cubics are in a same net which contains lots of remarkable cubics.

Some of these cubics are already mentioned in Table 54, see line Q = X(5) in the table and note 3. These are the cubics obtained when P lies on the Euler line.

This page presents a more in-depth study.

Recall that MB(P) passes through the isogonal conjugate P* of P and the reflection P' of P in X(5). MB(P), pK(X6, P) share the same points at infinity and MB(P), pK(X6, P') share the same points on (O).

MB(P) and MB(P') are isogonal transforms of one and another. They coincide if and only if P = X(5) giving the Napoleon cubic K005, or P lies on the line at infinity, giving the focal isogonal nKs mentioned below. More generally, for every P on K005, MB(P) passes through P and obviously also through P*, also on K005, and P'.

table80

MB(P) is an equilateral cubic if and only if P = O, giving the McCay stelloid K028 = psK(X4, X264, X3).

 

MB(P) is a circular cubic if and only if P lies on the line at infinity. In this case, it is an isogonal focal nK with singular focus on the circumcircle. Its root lies on the trilinear polar of X(264), passing through X(297), X(525), X(850), X(2501), X(2592), X(2593), etc.

Every cubic is the locus of foci of inscribed conics centered on a line passing through X(5). K164 is the only nK0 of this type.

 

MB(P) is a K0 (no term in xyz) if and only if P lies on the (blue) line passing through X(5), X(6) and many other centers.

 

MB(P) is a psK if and only if P lies on K044 = pK(X216, X4), the Darboux cubic of the orthic triangle. In this case, the pseudo-pole Ω lies on K176 = pK(X32, X4) and the pseudo-pivot Q lies on K674 = pK(X324, X264).

It follows that MB(P) is a pK if and only if P is X(5), X(68), X(155) corresponding to the Napoleon cubic K005, K1318 = pK(X571, X4), K1337 = pK(X2165, X847) respectively (see yellow cells in the table below).

P

X(3)

X(4)

X(5)

X(52)

X(68)

X(155)

X(5562)

X(8800)

X(8905)

X(8906)

X(34428)

X(58700)

X(58701)

Ω

X(4)

X(184)

X(6)

X(3)

X(571)

X(2165)

X(25)

X(155)

X(39109)

X(39110)

X(39111)

X(39112)

X(58702)

Q

X(264)

X(2)

X(5)

X(311)

X(4)

X(847)

X(324)

X(39113)

X(39114)

X(39115)

X(39116)

X(58703)

X(39117)

psK

K028

K009

K005

K1338

K1318

K1337

K1339

 

 

 

 

 

 

MB(P) is a nK if and only if P lies on the line at infinity as above, or on the (green) circum-conic with center X(5), perspector X(216), called the Johnson circum-conic. In this case, its pole Ω lies on the nodal cubic cK(#X6, X4) and its root lies on the circum-conic with perspector X(5). When P is A, B, C, X(110), X(265), the nK decomposes into a line and a conic. When P is a reflection A', B', C' of A, B, C in X(5), the nK is a nodal cubic with node A, B, C respectively. The isogonal transform of spK(A', X5) is a rectangular hyperbola with center X(5), passing through A, A', the four foci of the MacBeath inconic, the infinite points of the A-bisectors.

 

MB(P) is a K+ if and only if P lies on a (orange) cubic passing through X(3), X(54), X(382), X(15801), the infinite points of K005, the points on (O) of K003 (vertices N1, N2, N3 of the CircumNormal triangle) and on nK0(X6, X37367). These latter points are the antipodes M1, M2, M3 of the points of pK(X6, X1657) on (O), where X(1657) is the reflection of X(3) in X(20).

This cubic meets K005 again at six finite points on the rectangular hyperbola passing through X(3), X(20), X(54), X(155), X(2574), X(2575).

 

MB(P) is a nodal cubic if and only if P lies on a (dashed brown) very complicated bicircular curve of degree 12, passing through X(3), X(4), X(110), X(265), X(952), the infinite points of the lines passing through X(5) and the excenters, the infinite points of the circum-conic with perspector X(577). This curve is symmetric about X(5).

 

The table below shows all the listed cubics and several other remarkable examples.

F is the singular focus of a focal cubic. ∞Knnn are the infinite points of Knnn.

P

cubic

type

X(i) on the curve for i =

remarks

X(5)

K005

pK

see the page

∞K005

X(4)

K009

nodal psK

vertices of the CircumNormal triangle, see the page

∞K006

X(3)

K028

nodal psK+

see the page

stelloid, ∞K003

X(542)

K072

focal nK

2, 3, 4, 6, 542, 842, 6328, 14246, 14355, 14356, 14357, 14366, 38940

F = X(842)

X(3564)

K164

focal nK0

3, 4, 468, 895, 3563, 3564, 6337, 14248, 51847

F = X(3563)

X(952)

K165

focal nK

1, 3, 4, 952, 953, 3109, 6790, 14260, 14887, 36944, 38941, 43692, 52200

strophoid, F = X(953)

X(2782)

K166

focal nK

3, 4, 1316, 2698, 2782, 9513, 14251, 14382, 39641, 39642, foci of Brocard inellipse

F = X(2698)

X(30)

K187

focal nK

3, 4, 30, 74, 34209, 34210, 39162, 39163, 39164, 39165, 42411, 42412, 46357, 46358, 51898, 51899, foci of Steiner inellipse

F = X(74), ∞K001

X(511)

K433

focal nK

3, 4, 23, 32, 67, 76, 98, 511, 43087, 52179

F = X(98)

X(54)

K526

central

3, 4, 5, 54, 6288, 25043

center = X(5)

X(6)

K527

 

2, 3, 4, 76, 1352, 1689, 1690, 5486, 14355, 14376, 34511, 36823, 43084, 51259, 51260

∞K102

X(381)

K759

 

2, 3, 4, 3431, 7607, 9716, 9717, 14355, vertices of the Thomson triangle

 

X(2)

K762

 

3, 4, 6, 381, 576, 9214, 14356, 15274, 39239

∞K002

X(1352)

K835

 

3, 4, 6, 32, 1995, 3425, 8743, 14356, vertices of the Grebe triangle

 

X(20)

K846

 

3, 4, 64, 382, 3357, 51342, 52130

∞K004

X(382)

K850

central

3, 4, 20, 11270, 38942, antipodes of A, B, C on (O)

center = X(3)

X(523)

K932

focal nK

3, 4, 110, 523, 7471, 14264, 15453, 15454

F = X(110)

X(1154)

K1154

focal nK

3, 4, 1141, 1154, 2070, 25043, 25044, 33565, 38896, 38897

F = X(1141)

X(32423)

K1180

focal nK

3, 4, 5, 54, 14979, 32423, 38539, 38542

F = X(14979)

X(512)

K1282

focal nK

3, 4, 99, 512, 7468, 14265, 34157, 51478, 51479, 51480

F = X(99)

X(68)

K1318

pK

3, 4, 24, 155, 1147, 2904, 15317, 34756

 

X(1625)

K1319

nK

2, 3, 4, 879, 14355, 14592, 15412, 43665

 

X(155)

K1337

pK

3, 4, 68, 254, 847 / isogonal transform of K1318

 

X(52)

K1338

psK

3, 4, 76, 96, 1147, 2888 / isogonal transform of K1339

 

X(5562)

K1339

psK

3, 4, 32, 52, 847 / isogonal transform of K1338

 

X(355)

K1340

 

1, 3, 4, 56, 3417, 10571, 11101, 15446, 17104 / isogonal transform of K1345

 

X(2888)

K1341

 

3, 4, 195, 3432, 3459, 10274, 13621, 25044, 38539, 42059 / isogonal transform of K1342

 

X(195)

K1342

 

3, 4, 195, 2888, 3459, 13418, 25043, 38542 / isogonal transform of K1341

 

X(58922)

K1343

 

3, 4, 5, 49, 54, 1147, 3432, 10274, 58923, 58924, 58925

 

X(18436)

K1344

 

3, 4, 24, 847, 5889, 16000, 25044, 59274, 59275, 59276, 59277, 59278, 59279, 59280, 59281 / isogonal transform of K1346

 

X(1)

K1345

 

1, 3, 4, 8, 355, 5903, 10570, 13746, 22836 / isogonal transform of K1340

 

X(5889)

K1346

 

3, 4, 68, 1147, 1658, 9927, 18436, 22261, 58725, 59287, 59288, 59289 / isogonal transform of K1344

 

X(6288)

 

 

3, 4, 5, 54, 25044 / isogonal transform of K526

 

X(8800)

psK(X155, X39113, X3)

psK

3, 4

 

X(8905)

psK(X39109, X39114, X3)

psK

3, 4

 

X(8906)

psK(X39110, X39115, X3)

psK

3, 4

 

X(15801)

 

K+

3, 4, 3519, 18282

 

X(34428)

psK(X39111, X39116, X3)

psK

3, 4

 

Focal nKs with root R (on the trilinear polar of X264), singular focus F (on the circumcircle), computed by Peter Moses

cubic

X(i) on the cubic for i =

R

F

K165

1, 3, 4, 952, 953, 3109, 6790, 14260, 14887, 36944, 38941, 43692, 52200, 56528

10015

953

K072

2, 3, 4, 6, 542, 842, 6328, 14246, 14355, 14356, 14357, 14366, 38940

9979

842

K1180

3, 4, 5, 54, 14979, 32423, 38539, 38542

24978

14979

 

3, 4, 7, 55, 942, 943, 38540, 38543

?

?

 

3, 4, 8, 56, 104, 517, 1325, 10693, 38541, 38544

4391

104

 

3, 4, 10, 58, 573, 2708, 2792, 13478

?

2708

 

3, 4, 13, 15, 17, 61, 32460, 46059, 46061

?

?

 

3, 4, 14, 16, 18, 62, 32461, 46058, 46060

?

?

 

3, 4, 20, 64, 2693, 2777, 38937, 51346

?

2693

 

3, 4, 21, 65, 2687, 2771, 51470, 58076

?

2687

 

3, 4, 22, 66, 2697, 2781, 39269, 43089

?

2697

K433

3, 4, 23, 32, 67, 76, 98, 511, 43087, 52179

850

98

 

3, 4, 25, 69, 14984, 39169, 40118, 58080

?

40118

K187

3, 4, 30, 74, 34209, 34210, 39162, 39163, 39164, 39165, 42411, 42412, 46357, 46358, 51898, 51899

525

74

 

3, 4, 36, 80, 5903, 14987, 14988, 15446, 58738

?

14987

K1282

3, 4, 99, 512, 7468, 14265, 34157, 51478, 51479, 51480

51481

99

 

3, 4, 105, 518, 7469, 10100, 14268, 54236

26546

105

 

3, 4, 107, 520, 7480, 14220, 39174, 58085

46106

107

K932

3, 4, 110, 523, 7471, 14264, 15453, 15454

3580

110

 

3, 4, 111, 524, 5505, 7426, 13608, 14262

?

111

 

3, 4, 112, 525, 7473, 34156, 35909, 39265

297

112

 

3, 4, 186, 265, 847, 1147, 1300, 13754

14618

1300

 

3, 4, 187, 576, 671, 7607, 9716, 37907, 43656, 52173

?

43656

 

3, 4, 195, 1157, 1263, 3459, 10096, 33643, 50708

?

33643

 

3, 4, 403, 1299, 5504, 34756, 34853, 44665

57065

1299

K164

3, 4, 468, 895, 3563, 3564, 6337, 14248, 51847

2501

3563

 

3, 4, 476, 526, 10412, 15328, 15329, 52603, 58086

?

476

 

3, 4, 690, 691, 4226, 10411, 15475, 35364, 38939, 51474

54395

691

 

3, 4, 858, 1177, 1297, 1503, 8743, 14376, 43090

33294

1297

 

3, 4, 879, 935, 4230, 9517, 14591, 14592, 51472, 58087

?

935

 

3, 4, 916, 917, 2073, 38535, 57501, 58074

46107

917

K1154

3, 4, 1141, 1154, 2070, 25043, 25044, 33565, 38896, 38897

18314

1141

 

3, 4, 1294, 2071, 6000, 11744, 14249, 14379

?

1294

 

3, 4, 1304, 4240, 9033, 14380, 43083, 51475, 53176

?

1304

K166

3, 4, 1316, 2698, 2782, 9513, 14251, 14382, 39641, 39642

3569

2698

 

3, 4, 1995, 2770, 2854, 5486, 43084, 52668

?

2770

 

3, 4, 2888, 3432, 10274, 19552, 34418, 39431

?

39431

 

3, 4, 2904, 15478, 16172, 53172, 58724, 58726

?

?

 

3, 4, 5189, 14247, 14378, 29011, 29012, 34437

?

29011