Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

Consider a circum-conic (C) with center T and perspector S = G/T (Ceva conjugate).

A variable line (L) passing through T meets (C) at two points M, N. Let C(M, N) be the bicevian conic passing through the vertices of the cevian triangles of M and N. (C) and (L) meet at two points P, Q and, when (L) rotates around T, the locus of P, Q is a cubic K(T).

K(T) is a pivotal cubic with pivot T and pole the barycentric square Ω of G/T. Hence, K(T) = K(G/S) = pK(S^2, G/S) = pK((G/T)^2, T).

The isoconjugation with pole S transforms K(T) into the isotomic pivotal cubic pK(G, aS) with pivot aS, the anticomplement of S.

The most remarkable example is K172 = pK(X32, X3) since (C) is the circumcircle of ABC. The corresponding isotomic cubic is the Lucas cubic K007.

Here is a selection of some cubics K(T) and K'(T) = pK(G, aS) with a list of centers X(i) when the cubic is not listed in CTC (updated by Peter Moses, 2021-12-21).

Remark : when T = G, the cubics K(T) and K'(T) are the union of the medians of ABC.

T

K(T) = pK(Ω, T)

K'(T) = pK(G, aS)

1

1, 9, 200, 3158, 3680

K1078

3

K172

K007

5

5, 51, 216, 418, 5562

K045

6

K1047

K170

9

K351

K200

10

10, 37, 42, 65, 71, 210, 227, 1826

K034

37

10, 37, 321, 3971, 22028, 42027

1, 2, 75, 192, 330, 3223, 17149

39

39, 141, 8024, 42551

K659

113

113, 3003, 13754, 44084

K279

115

2, 115, 523, 9293, 10278, 14086

2, 99, 148, 523, 35511

141

39, 141, 1843, 3051, 3917, 23208

K141

206

32, 184, 206, 1974, 22262, 40146

2, 4, 66, 69, 315, 1370, 5596, 13575

214

1, 44, 214, 678, 1319, 3689, 40172

K311

216

5, 216, 324, 42453

K146

523

115, 523, 8029, 13636, 13722

K242

618

396, 618, 8014, 15768, 34296

K264a

619

395, 619, 8015, 15769, 34295

K264b

690

690, 1648, 1649, 14443, 14444, 23992, 33915, 33919, 46049

K240

891

891, 1646, 14434, 14441, 33917, 39011

2, 513, 536, 668, 889, 891, 3227, 41314, 43928

900

900, 1647, 6544, 6550, 14442, 33922, 35092, 46050

2, 190, 514, 519, 900, 903, 4555, 6548, 17780

942

942, 2294, 18591, 23207, 40952, 41393

K610

946

946, 2262, 40943

K133

960

960, 2092, 2292, 2300, 3725, 21810, 22076, 42550, 44092

K254

1015

2, 513, 1015, 9267, 14079, 38238

2, 513, 668, 9263, 9295

1086

2, 514, 1086, 14078, 21204, 42555

2, 190, 514, 4440, 6630

1511

3, 1495, 1511, 3284

K611

2883

185, 800, 2883, 44079

K235

3163

2, 30, 3163, 34582

K860

3647

1100, 1962, 3647, 3683, 32636

K455

6184

2, 241, 518, 3693, 6184, 8299, 22116

2, 7, 8, 239, 335, 518, 2481, 10025, 17794, 39350

6260

1108, 1864, 6260, 37566

K154

6593

6, 187, 3292, 6593, 10417, 39689, 44102

K008

11672

2, 232, 511, 11672, 36212, 36213, 40804, 40810

K355