Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

X(2), X(4), X(67), X(69), X(316), X(524), X(671), X(858), X(2373), X(11061), X(13574), X(14360), X(14364), X(34163), X(34164), X(34165), X(34166), X(39157)

X(55838) → X(55855), X(56471) → X(56494)

Ga, Gb, Gc vertices of the antimedial triangle

Other points below

The Droussent cubic is basically the only isotomic circular pK. Its pivot is X(316) reflection of X(99) in the de Longchamps axis and isotomic conjugate of X(67).

Its singular focus F = X(10748) is the midpoint of X(4)X(14360) and the intersection of the lines X(3)X(126), X(5)X(111), X(30)X(1296).

K008 meets :

– its real asymptote (the line X(111)X(524)) at X = X(34166) on the line X(4)X(14360).

– the circumcircle at A, B, C, X(2373) and the circular points at infinity.

– the Steiner ellipse at A, B, C, X(671) and two imaginary points on the de Longchamps axis (which contains X(858) as well).

K008 is well-documented in Droussent's original paper. See the bibliography. See also Droussent central cubic, Droussent medial cubic and K007, property 8.

The isogonal transform of the Droussent cubic is K108 = pK(X32, X23) and its antigonal transform is K273.

K008 is a pivotal cubic under several conjugations :

– obviously isotomic conjugation with pivot X(316),

– X(316)-Ceva conjugation with pivot X(67),

– X(67)-cross conjugation with pivot X(55839),

– X(897)-anticomplementary conjugation with pivot X(2).

Locus properties :

  1. Locus of point M whose cevian triangle is orthologic to the pedal triangle of X(23). More generally, any pK(X2,P) can be seen similarly with the pedal triangle of the isogonal of the isotomic conjugate Q of P. With Q = X(1), X(3), X(4), X(40), X(84) we obtain K034, the Lucas cubic K007, K045, K154, K133 respectively.
  2. Locus of pivots of circular pKs which pass through G and X(524). See CL035.
  3. Locus of P such that the trilinear polar of P with respect to the antimedial triangle is parallel to the polar of P in the conic with center X(67) which passes through Ga, Gb, Gc (Droussent).
  4. Locus of P such that the circles PAGa, PBGb, PCGc are concurrent (Floor van Lamoen). More generally, for any Q which is not an in/excenter, let A'B'C' be the anticevian triangle of Q.The three circles PAA', PBB', PCC' are concurrent if and only if P lies on the circular pK with pole Q^2 (or fixed point Q) and pivot according to Special Isocubics §4.2.1. For example, with Q = K, A'B'C' is the tangential triangle and the cubic is K108.
  5. Locus of P such that P, X(69) and the DF-pole of P are collinear. See CL039.
  6. See also CL051.
  7. Locus of pivots of circular pKs whose orthic line passes through X(524). The locus of the poles is K043. See CL035.
  8. See also Walsmith triangle at K1091.

 

K008a

K008 has always three real prehessians P1, P2, P3.

The centers of the polar conics of X(524) with respect to these prehessians are M1, M2, M3 where M1 = A X(671) /\ Ga X(69), M2 and M3 likewise.

Furthermore the polar conic of X(524) in K008 is a rectangular hyperbola.

It follows that K008 is the isogonal pK with pivot X(524) with respect to the triangle M1M2M3. Thus it must pass through the in/excenters of this latter triangle with tangents parallel to the real asymptote.

X is then the isogonal conjugate of X(524) in M1M2M3 and the singular focus F is its antipode on the circumcircle of M1M2M3.

This can easily be generalized for any point M on K008 as far as M is not a flex. If M1, M2, M3 are the centers of the polar conics of M with respect to the prehessians then K008 is a pivotal cubic with pivot M in the triangle M1M2M3. The tangents at M1, M2, M3 (and M) concur at the isopivot M' and the polar conic of M' contains these five points.

Examples :

• when M = X2, M1M2M3 is the antimedial triangle and M' is X(316).

• when M = X(67), M1M2M3 is the cevian triangle of X(316) and M' is the tangential X(55839) of X(67).

 

Points on K008

tP, X316/P, X67©P, X897-acP, tanP are respectively the isotomic conjugate, X(316)-Ceva conjugate, X(67)-cross conjugate, X(897)-anticomplementary conjugate, tangential of P.

P

tP

X316/P

X67©P

X897-acP

tanP

SEARCH(P)

2

2

11061

14364

316

316

2.629368792488718

4

69

34163

13574

858

55847

-5.676619410926536

67

316

55839

67

11061

55839

5.987634908298794

69

4

14360

56473

524

39157

5.902289387334815

316

67

316

56730

2

67

11.5698738526503

524

671

858

56474

69

34166

5.464204286365709

671

524

55838

2373

14360

55846

1.820008131329324

858

2373

524

56476

4

56480

5.470836447670901

2373

858

55841

671

34163

 

13.85489574271243

11061

14364

2

56479

67

56730

-4.087163439131434

13574

14360

55844

4

55838

 

8.331144006674782

14360

13574

69

56478

671

55854

5.473222624215814

14364

11061

55845

2

55839

 

5.471194945390391

34163

56473

4

 

2373

 

3.295242497999606

34164

55851

34165

56481

34166

 

6.686247678169388

34165

55848

34164

56475

39157

 

8.137631633933725

34166

39157

55846

56480

34164

 

-34.48458231620383

39157

34166

55847

55854

34165

 

-0.6062915107828841

55838

56474

671

 

13574

 

-2.815818473943535

55839

56730

67

 

14364

 

75.35512620026191

55840

56475

55848

 

56480

 

6.355229114184416

55841

56476

2373

 

56473

 

9.906292121099521

55842

55849

55853

56491

55850

 

15.9845503314972

55843

56477

55850

 

55849

 

-6.54928085926222

55844

56478

13574

 

56474

 

7.185034190729121

55845

56479

14364

 

56730

 

1.886572944337355

55846

55854

34166

 

55851

 

4.626016162279342

55847

56480

39157

56494

55848

 

0.5422301019298273

55848

34165

55840

55851

55847

 

7.508058510624782

55849

55842

56485

56482

55843

 

5.127639031727387

55850

55855

55843

56493

55842

 

3.696952287299681

55851

34164

55852

55848

55846

 

-6.922170735786058

55852

56481

55851

 

55854

 

4.211444953165199

55853

56482

55842

 

55855

 

9.005399048654538

55854

55846

 

39157

55852

 

20.3292923875051

55855

55850

56488

56477

55853

 

1.189187408875814

56471

56483

56472

 

 

 

 

56472

56484

56471

 

 

 

 

56473

34163

 

69

55841

 

1.833740488379655

56474

55838

 

524

55844

 

-18.03575067156534

56475

55840

 

34165

 

 

 

56476

55841

 

858

 

 

 

56477

55843

 

55855

56485

 

 

56478

55844

 

14360

 

 

 

56479

55845

 

 

55840

 

 

56480

55847

 

34166

55840

 

-64.20749063836018

56481

55852

 

34164

 

 

 

56482

55853

 

55849

56488

 

 

56483

56471

 

56484

 

 

 

56484

56472

 

56483

 

 

 

56485

56491

 

 

56477

 

 

56486

56492

 

 

56490

 

 

56487

56490

 

56494

 

 

 

56488

56493

55855

 

56482

 

 

56489

56494

56490

 

56492

 

 

56490

56847

 

 

 

 

 

56491

56845

 

55842

 

 

 

56492

56846

 

 

56849

 

 

56493

56848

 

55850

 

 

 

56494

56849

 

56847

 

 

 

56730

55839

 

316

55845

 

2.784738933404024