![]() |
|||
Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves |
|||
![]() |
![]() |
||
![]() |
|||
![]() |
|||
X(2), X(4), X(67), X(69), X(316), X(524), X(671), X(858), X(2373), X(11061), X(13574), X(14360), X(14364), X(34163), X(34164), X(34165), X(34166), X(39157) X(55838) → X(55855), X(56471) → X(56494) Ga, Gb, Gc vertices of the antimedial triangle Other points below |
|||
![]() |
|||
![]() |
![]() |
![]() |
![]() |
The Droussent cubic is basically the only isotomic circular pK. Its pivot is X(316) reflection of X(99) in the de Longchamps axis and isotomic conjugate of X(67). Its singular focus F = X(10748) is the midpoint of X(4)X(14360) and the intersection of the lines X(3)X(126), X(5)X(111), X(30)X(1296). K008 meets : – its real asymptote (the line X(111)X(524)) at X = X(34166) on the line X(4)X(14360). – the circumcircle at A, B, C, X(2373) and the circular points at infinity. – the Steiner ellipse at A, B, C, X(671) and two imaginary points on the de Longchamps axis (which contains X(858) as well). K008 is well-documented in Droussent's original paper. See the bibliography. See also Droussent central cubic, Droussent medial cubic and K007, property 8. The isogonal transform of the Droussent cubic is K108 = pK(X32, X23) and its antigonal transform is K273. K008 is a pivotal cubic under several conjugations : – obviously isotomic conjugation with pivot X(316), – X(316)-Ceva conjugation with pivot X(67), – X(67)-cross conjugation with pivot X(55839), – X(897)-anticomplementary conjugation with pivot X(2). Locus properties :
|
|
![]() |
![]() |
|
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
K008 has always three real prehessians P1, P2, P3. The centers of the polar conics of X(524) with respect to these prehessians are M1, M2, M3 where M1 = A X(671) /\ Ga X(69), M2 and M3 likewise. Furthermore the polar conic of X(524) in K008 is a rectangular hyperbola. It follows that K008 is the isogonal pK with pivot X(524) with respect to the triangle M1M2M3. Thus it must pass through the in/excenters of this latter triangle with tangents parallel to the real asymptote. X is then the isogonal conjugate of X(524) in M1M2M3 and the singular focus F is its antipode on the circumcircle of M1M2M3. |
|
![]() |
![]() |
![]() |
This can easily be generalized for any point M on K008 as far as M is not a flex. If M1, M2, M3 are the centers of the polar conics of M with respect to the prehessians then K008 is a pivotal cubic with pivot M in the triangle M1M2M3. The tangents at M1, M2, M3 (and M) concur at the isopivot M' and the polar conic of M' contains these five points. Examples : • when M = X2, M1M2M3 is the antimedial triangle and M' is X(316). • when M = X(67), M1M2M3 is the cevian triangle of X(316) and M' is the tangential X(55839) of X(67). |
|
![]() |
![]() |
|
|
![]() |
![]() |
Points on K008 tP, X316/P, X67©P, X897-acP, tanP are respectively the isotomic conjugate, X(316)-Ceva conjugate, X(67)-cross conjugate, X(897)-anticomplementary conjugate, tangential of P. |
|
![]() |
![]() |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |