Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

For any pivot P, the cubic K = pK(O x P, P) has isopivot O = X(3) hence its tangents at A, B, C, P concur at O.

The isogonal transform K* of K is a member of CL019 with pivot H.

If P = O, the cubic splits into the cevian lines of O.

K passes through O, P, the P-Ceva conjugate P/O of O (which is the tangential of O and the tertiary pivot of K) and the crossconjugate O©P of O and P.

K meets the line at infinity (L∞) and the circumcircle (O) at the same points as two isogonal pKs with respective pivots P1, P2. We have P1 = a(ctP ÷ H) and P2 = agP. See CL073 for a generalization.

pK(O x P, P) passes through a given point M ≠ O if and only if P lies on the circum-conic C(M) with perspector the barycentric quotient of M^2 and the trilinear pole of the line OM. In this case, the cubic must contain O©M and these cubics form a pencil.

K is circular if and only if P2 = agP is on (L∞) hence P is on (O). In this case, K is an inversible cubic and its singular focus lies on the circumcircle of the tangential triangle.

K is equilateral (i.e. is a pK60) if and only if P1 = O hence P = X(15318).

K is a pK+ if and only if P lies on a circum-cubic passing through X(3), X(5), X(20), PM1 = {3,6}/\{217,1154}, PM2 = {3,3164}/\{5,324}. This cubic meets (L∞) at the same points as pK(X6, X34148) and (O) at the same points as pK(X6, PM3) where PM3 = {20,2979}/\{30,49}. These points PM1, PM2, PM3 are now X(41480), X(41481), X(41482) in ETC.

The locus of the intersection of the asymptotes is then an equilateral cubic passing through X(2), X(3), X(154), X(1075), X(14059), the cevians of O, the infinite points of K003.

***

The following table (contributed by Peter Moses) shows a large selection of these cubics.

Notes

• When P lies on the Kiepert hyperbola, the pole Ω = O x P of K lies on the Jerabek hyperbola. These cubics form a pencil and pass through X(485), X(486). The third point of K on the line through X(485), X(486) is the P-Ceva conjugate P/O of O. See green cells in the table.

• When P lies on the Feuerbach hyperbola, the pole Ω = O x P of K lies on the circum-hyperbola with perspector X(1946) passing through X(6), X(48), etc. These cubics form another pencil and pass through X(1), X(90). The third point of K on the line through X(1), X(90) is the P-Ceva conjugate P/O of O. See blue cells in the table.

• When P lies on the circum-hyperbola with perspector X(525), K passes through X(2) and X(69) and Ω lies on the circum-hyperbola with perspector X(520). this gives another pencil corresponding to the purple cells in the table.

• The grey cells show the cubics passing through X(6) and X(8770) for P on the circum-conic with perspector X(512).

The pink cells show the cubics passing through X(4) and X(254) for P on the circum-conic with perspector X(2501).

• The red cells show cubics that belong to at least two of these pencils.

P

K or X(i) on K for i =

remark

K*

1

K1061

 

K691

2

K168

 

K233

4

K006

 

K006

6

K167

 

K181

25

K171

 

K170

32

K411

 

 

54

K373

 

K049

69

K099

 

K445

74

K114

circular inversible

K059

95

K646

 

K350

98

K336

circular inversible

K337

104

K436

circular inversible

K334

264

K045

 

K176

393

K163

 

 

1141

K112

circular inversible

K050

1976

K781

 

K718

2373

K113

circular inversible

K475

8884

K919

 

K044

15318

K956

pK60

 

5

3, 5, 195

pK+

 

7

1, 3, 7, 57, 63, 77, 90, 224, 3173, 15474, 40214

 

K1186

8

1, 3, 8, 40, 78, 90, 271

 

 

13

3, 13, 15, 62, 485, 486, 10217, 10661

 

 

14

3, 14, 16, 61, 370, 485, 486, 10218, 10662

 

 

20

3, 20, 1498

pK+

 

21

1, 3, 21, 90, 283, 1800, 1805, 1806, 30556, 30557

 

 

42

3, 6, 42, 71, 8770, 15377, 18755

 

 

59

3, 59, 100, 1381, 1382, 1822, 1823, 2975, 36059

 

 

64

3, 64

 

K329

76

3, 76, 485, 486, 1670, 1671, 23128

 

 

81

3, 58, 63, 77, 81, 272, 284, 15376, 15393

 

 

84

1, 3, 84, 90, 1433

 

K807

96

3, 54, 68, 96, 485, 486

 

K415

105

3, 105, 3513, 3514, 15382, 34381, 40568, 40569

circular inversible

 

111

3, 6, 111, 187, 895, 6091, 8681, 8770, 15387, 15390, 15398

circular inversible

K209

249

3, 99, 249, 1078, 1379, 1380, 32661

 

 

250

3, 110, 250, 1113, 1114, 15460, 15461

 

K238

251

3, 6, 32, 251, 1176, 1799, 8770, 15371

 

K517

252

3, 17, 18, 54, 96, 252, 3519, 5449

 

K416

253

2, 3, 64, 69, 253, 1073, 3146, 15400, 37672

 

 

262

3, 262, 485, 486, 1689, 1690, 19139

 

 

265

3, 5, 30, 265, 1807, 7100, 10217, 10218, 15392, 20123

 

 

287

2, 3, 69, 248, 287, 401, 3289, 12215, 15391, 17974

 

 

305

2, 3, 69, 305, 1370, 3926, 20806

 

 

306

2, 3, 69, 71, 306, 3151, 3682, 15377, 22133

 

 

307

2, 3, 69, 73, 307, 3152, 40152

 

 

328

2, 3, 69, 265, 328, 3153, 15392

 

 

593

3, 58, 593, 1333, 1444, 1790, 15376, 15408

 

 

604

3, 48, 56, 604, 1403, 15373, 15375

 

 

847

3, 4, 68, 254, 847, 7505, 34853

 

 

909

3, 48, 104, 909, 2252, 15373, 15381

 

 

941

1, 3, 6, 90, 941, 5227, 8770, 17594, 34259, 36744

 

 

943

1, 3, 35, 72, 90, 943, 1175, 1794, 11517

 

K1184

961

3, 56, 65, 961, 1791, 1798, 15375

 

 

1014

3, 56, 57, 1014, 1444, 1790, 15375

 

 

1073

3, 219, 1073, 38292

 

K709

1169

3, 6, 1169, 1333, 1791, 1798, 8770, 15408

 

 

1171

3, 6, 58, 1171, 1796, 8770, 15376

 

 

1172

1, 3, 90, 284, 1172, 1754, 15393

 

 

1300

3, 4, 186, 254, 1300, 5504, 12028, 15478

circular inversible

K339

1441

2, 3, 65, 69, 1214, 1441, 2475

 

 

1444

3, 21, 63, 77, 283, 1444, 1790, 1804, 1817

 

 

1494

2, 3, 30, 69, 74, 323, 1494, 10419, 14919, 20123

 

K496

1792

3, 21, 78, 271, 283, 1259, 1792, 1819, 13614

 

 

1799

2, 3, 22, 69, 1176, 1799, 28724

 

 

1814

3, 63, 77, 1814, 20752, 20769, 36057

 

 

1826

3, 4, 71, 254, 1826, 4213, 15377

 

 

1896

1, 3, 29, 90, 1715, 1896, 3559

 

 

1916

3, 39, 485, 486, 511, 1916, 15372

 

 

1937

1, 3, 73, 90, 243, 296, 1758, 1937, 1940, 37142

 

K1185

1972

2, 3, 69, 216, 511, 1972, 1987, 9291, 14941, 16089, 40853

 

 

1974

3, 25, 31, 184, 1974, 11325, 15369, 15370, 15389

 

 

1989

3, 6, 265, 1989, 8770, 11063, 15392

 

 

2346

1, 3, 55, 90, 2346, 15374, 40443

 

 

2359

3, 48, 71, 1791, 1798, 2359, 3955, 15373, 15377

 

 

3399

3, 485, 486, 3102, 3103, 3399, 7594

 

 

3407

3, 32, 182, 485, 486, 3407, 15371

 

 

3964

3, 394, 1259, 1804, 3964, 6617, 15394, 35602

 

 

5392

3, 264, 485, 486, 5392, 11090, 11091

 

 

5627

3, 74, 265, 3470, 5627, 10419, 15392, 39170

 

K1157

6330

2, 3, 69, 297, 1297, 6330, 15407

 

 

6344

3, 4, 254, 265, 6344, 15392, 37943

 

 

6531

3, 4, 248, 254, 419, 6531, 15391

 

 

7054

3, 21, 283, 284, 2193, 7054, 15393

 

 

8587

3, 187, 485, 486, 575, 8587, 15390

 

 

8749

3, 6, 74, 3003, 8749, 8770, 10419

 

 

8791

3, 6, 67, 427, 468, 8770, 8791

 

 

8882

3, 6, 54, 96, 571, 8770, 8882

 

K1087

9139

3, 74, 895, 9139, 9717, 10419, 15398

 

 

14534

3, 58, 485, 486, 572, 14534, 15376

 

 

14910

3, 6, 50, 5504, 8770, 12028, 14910

 

 

14998

3, 6, 647, 842, 8770, 14998, 35909

 

 

15395

3, 74, 110, 250, 476, 10419, 15395

 

 

16080

3, 470, 471, 485, 486, 16080, 39377, 39378

 

 

16277

3, 66, 485, 486, 1176, 1799, 2353, 16277

 

 

17983

3, 4, 254, 468, 895, 15398, 17983

 

 

18018

2, 3, 66, 69, 7391, 14376, 18018

 

 

18019

2, 3, 67, 69, 5189, 18019, 34897

 

 

18316

3, 265, 485, 486, 3431, 15392, 18316

 

 

18532

3, 24, 378, 3422, 7163, 14517, 18532

 

 

20336

2, 3, 69, 72, 3998, 20336, 23130

 

 

22455

3, 74, 186, 378, 3431, 10419, 22455

 

 

30786

2, 3, 69, 858, 895, 6390, 15398, 22151, 30786

 

 

32085

3, 4, 25, 254, 1176, 1799, 15369, 32085

 

 

34405

3, 394, 489, 490, 491, 492, 8946, 8948, 15394, 34405

 

 

35510

2, 3, 69, 3532, 5059, 35510, 36609

 

 

36101

3, 63, 77, 103, 2338, 15380, 36101

 

 

36121

1, 3, 90, 102, 1735, 15379, 36121

 

 

39645

3, 6, 230, 5254, 6530, 8770, 39645

 

 

40032

2, 3, 69, 15466, 15740, 37201, 40032, 40680

 

 

40395

3, 284, 485, 486, 580, 15393, 40395

 

 

40410

2, 3, 5, 69, 1173, 1994, 31626, 40410

 

 

40412

2, 3, 21, 69, 81, 272, 283, 1175, 40412

 

 

40413

2, 3, 25, 69, 193, 15369, 40413

 

K1165

40454

1, 3, 90, 1791, 1798, 3435, 40454

 

 

40708

2, 3, 69, 3917, 36212, 36214, 40708

 

 

40709

2, 3, 69, 10217, 19772, 36296, 40709

 

 

40710

2, 3, 69, 10218, 19773, 36297, 40710

 

 

40802

3, 6, 183, 394, 1350, 1975, 8770, 15394, 40801, 40802

 

 

40824

3, 485, 486, 3926, 10008, 40801, 40824

 

 

41013

3, 4, 72, 254, 451, 39131, 41013

 

 

41480

3, 41480

pK+

 

41481

3, 41481

pK+

 

41483

3, 54, 76, 83, 96, 276, 1078, 34386, 41483

 

K1088

41484

3, 6, 64, 8770, 41484

 

K182