Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

The two most famous isotomic pivotal cubics K007 = Lucas cubic and K008 = Droussent cubic generate a pencil of cubics (K) we call the Lucas - Droussent pencil.

Each member of this pencil is (K), an isotomic pK with pivot P on the line X4, X69 and isopivot on the Jerabek hyperbola.

These cubics are :

– the isogonal conjugates of pKs with pole X32, pivot on the Euler line. See Table 34.

– the complements (K') of pKs with pole cP (the complement of P) on the Brocard axis, pivot G i.e. the cubics of the pencil generated by K002 = Thomson cubic and K043 = Droussent medial cubic.

The nine base points of the pencil are A, B, C, G, H, X69, Ga, Gb, Gc (vertices of the antimedial triangle).

***

Geometric properties

(K) = pK(X2, P) meets the line at infinity and the circum-circle at the same points as two isogonal pKs (K1), (K2) with pivots P1 and P2 respectively.

P1 lies on the line {2, 6} ad P2 lies on the line {66, 69}. See figure 1.

(K) and (K1) meet again at six finite points on a circum-conic (C), namely A, B, C, G, P1 and Q1 on Q066. Note that the line P1Q1 is tangent to the Stammler hyperbola.

(K) and (K2) meet at A, B, C, T1, T2, T3 on (O) and at three points on a line (L) passing through X(6) and gP1.

Note that (L) and (C) meet on the Grebe cubic K102.

 

When P traverses the line {4, 69},

• the line {P, P1} envelopes an ellipse (E), with center X(115), passing through {2, 315, 671, 46707, 54097}. (E) is inscribed in the antimedial triangle, also in the anticevian triangle of X(99). It is the anticomplement of the ellipse with center X(620) inscribed in ABC.

• the line {P, P2} envelopes a hyperbola (H), with center X(110) x X(636), passing through {76, 2979}. This center lies on the lines {39, 695}, {99, 512}, {110, 827}.

• the line {P1, P2} envelopes a parabola (P), passing through {6, 2854, 12220}, with directrix the line {110, 1296}, focus F on the lines {67, 524}, {110, 1499}.

Remarks :

  1. (E) and (H) are tangent to the line {4, 69} at X(315), X(76) respectively.
  2. (E) and (P) are tangent to the line {2, 6} at X(2), X(6) respectively.
  3. (H) and (P) are tangent to the line {66, 69} at X(2979), X(12220) respectively.

Hence, when one the three points P, P1, P2 is given, it is easy to find the others. See figure 2.

• the sidelines of the triangle (T) = T1T2T3 envelope a parabola (π), with focus X(2373), directrix the line {66, 69}, passing through X(30209) at infinity. This parabola is tangent to the lines {297, 525}, {325, 523}, {125, 339}. See figure 3.

• the conic inscribed in ABC and (T) is also tangent to the line {125, 339} and has its center on the line {141, 1368}. See figure 3.

• the isogonal conjugation with respect to (T) transforms (K) into a central cubic (K") with center the isogonal conjugate X in (T) of P, passing through X(20), T1, T2, T3 and the infinite points of the altitudes of ABC. (K") meets (O) again at R1, R2, R3 which are the antipodes of the points S1, S2, S3 (apart A, B, C) where pK(X6, P1) meets (O). X lies on the line {69, 74, 99, 376, 542, etc}. See figure 4.

table35fig1 table35fig2

Figure 1 : (K1) and (K2)

Figure 2 : (E), (H) and (P)

table35fig3 table35fig4

Figure 3 : (T), (C) and (π)

Figure 4 : (K) and (K")

Additional remarks :

• Figure 1 : (K1) and (K2) meet at A, B, C, X(1), Ia, Ib, Ic and two other points M1, M2 on the line {P1, P2} and on the circum-conic which is its isogonal transform. This line is parallel to (L). These points M1, M2 lie on an isogonal circular circum-sextic passing through X(1), X(2), X(6), X(1113), X(1114), X(2574), X(2575), excenters, infinite points of the conic ABCGK and their isogonal conjugates.

• Figure 4 : Y2, Y4, Y69 are the isogonal conjugates with respect to (T) of X(2), X(4), X(69). These points lie on the lines {20, 64, 69, ...}, {22, 69, 159, ...}, {2, 3, 4, 20, ...} (Euler line).

 

The following tables (contributed by Peter Moses) present a selection of these cubics according to the pivot P or the isopivot P* or the third point Q on the line X2, X69. The base points are not repeated.

P

X(i) on (K) for i = 2, 4, 69 and

(K)

(K')

4

193, 487, 488, 2996, 13386, 13387, 13428, 13439, 19583, 24243, 24244

K170

K168

69

7, 8, 20, 189, 253, 329, 1032, 1034, 5932, 14361, 14362, 14365, 34162, 39158, 39159, 39160, 39161, 41080

K007

K002

76

6, 22, 76, 1670, 1671, 18018, 19613

K141

K836

264

3, 254, 264, 1993, 5392, 40697, 40698

K045

K612

286

21, 63, 72, 92, 286, 1441, 2997, 3868, 40571

K610

---

311

54, 311, 1994, 2888, 3459, 7488, 11140

---

---

314

1, 65, 75, 81, 314, 321, 1764, 2995, 3869, 16049, 17751, 20028

K254

K253

315

66, 315, 1370, 5596, 13575

K1365

K177

316

67, 316, 524, 671, 858, 2373, 11061, 13574, 14360, 14364, 34163, 34164, 34165, 34166, 39157

K008

K043

317

68, 317, 6193, 6504, 6515

---

---

340

30, 265, 340, 1494, 2986, 3580, 12383

K611

---

511

290, 385, 401, 511, 1916, 1972, 25332, 39355

K355

K357

621

616, 621, 628, 2992, 3180, 11121, 16770, 19713, 19772, 19774, 19776, 19778, 36929

K1053a

K341a

622

617, 622, 627, 2993, 3181, 11122, 16771, 19712, 19773, 19775, 19777, 19779, 36928

K1053b

K341b

877

877, 879, 4226, 34211

---

---

1232

1173, 1232, 2889, 34545

---

---

1234

1175, 1234

---

---

1235

1176, 1235, 6636

---

---

1236

1177, 1236, 2892, 22151, 37929

---

---

1330

1330, 1654, 3151, 6625, 8044

---

---

1352

1352, 7774

---

---

1843

384, 1843, 9229, 10340

---

---

2893

2893, 3152, 17778

---

---

3186

3186, 3552

---

---

3260

74, 94, 146, 323, 1138, 1272, 2071, 3260

K279

K489

3818

3818, 7837

---

---

5207

147, 1031, 2896, 4388, 4645, 5207, 7224, 7261, 7779, 9473, 11606, 20021, 20022, 34214

K1000

K252

5562

5562, 8613, 8795, 9290

---

---

7768

83, 141, 1369, 7768, 15321

---

---

7850

598, 599, 7850

---

---

7860

7860, 40341

---

---

9230

695, 3051, 9230, 37889, 39953, 40016

---

---

9291

418, 9291

---

---

10446

10446, 37683

---

---

10449

1246, 7560, 10449, 17379

---

---

10477

10477, 16998

---

---

11185

1992, 5485, 5486, 7493, 11185

---

K284

14221

99, 523, 14221, 14223, 14999

---

---

14615

64, 394, 2052, 3346, 6225, 6527, 11413, 14615

K235

K924

14994

3329, 14994

---

---

15164

1113, 2574, 2592, 8115, 15164, 22339

---

---

15165

1114, 2575, 2593, 8116, 15165, 22340

---

---

17139

4080, 16704, 17139, 38955

---

---

17984

237, 17984, 18024, 36214

---

---

18906

194, 263, 2998, 3212, 6194, 7155, 7766, 18906, 19222, 20023, 24349, 32937

K1037

K1012

20558

20536, 20558

---

---

21287

1029, 2895, 21287

---

---

22468

801, 13567, 22466, 22468, 22647

---

---

32000

3522, 11469, 15740, 32000

---

---

32001

3146, 15077, 32001, 35510

---

---

32002

5, 95, 3519, 11271, 32002

---

---

32006

7396, 16774, 20080, 32006, 38259

---

---

33297

10, 86, 8049, 15320, 17135, 33297

---

---

34282

940, 34258, 34282

---

---

34507

7777, 34507

---

---

38434

38433, 38434

---

---

38437

38436, 38437

---

---

38440

38439, 38440

---

---

39266

39099, 39266

---

---

 

 

 

 

P*

X(i) on (K) for i = 2, 4, 69 and

(K)

3

3, 254, 264, 1993, 5392, 40697, 40698

K045

4

7, 8, 20, 189, 253, 329, 1032, 1034, 5932, 14361, 14362, 14365, 34162, 39158, 39159, 39160, 39161, 41080

K007

6

6, 22, 76, 1670, 1671, 18018, 19613

K141

54

54, 311, 1994, 2888, 3459, 7488, 11140

---

64

64, 394, 2052, 3346, 6225, 6527, 11413, 14615

K235

65

1, 65, 75, 81, 314, 321, 1764, 2995, 3869, 16049, 17751, 20028

K254

66

66, 315, 1370, 5596, 13575

---

67

67, 316, 524, 671, 858, 2373, 11061, 13574, 14360, 14364, 34163, 34164, 34165, 34166, 39157

K008

68

68, 317, 6193, 6504, 6515

---

69

193, 487, 488, 2996, 13386, 13387, 13428, 13439, 19583, 24243, 24244

K170

70

70, 13579, 37444

---

71

71, 4184, 17220, 17911

---

72

21, 63, 72, 92, 286, 1441, 2997, 3868, 40571

K610

73

73, 4225

---

74

74, 94, 146, 323, 1138, 1272, 2071, 3260

K279

248

248, 393, 1297, 2987, 3926, 30737, 34137, 37183

---

265

30, 265, 340, 1494, 2986, 3580, 12383

K611

290

290, 385, 401, 511, 1916, 1972, 25332, 39355

K355

695

695, 3051, 9230, 37889, 39953, 40016

---

879

877, 879, 4226, 34211

---

895

23, 895, 18019, 37784

---

1173

1173, 1232, 2889, 34545

---

1175

1175, 1234

---

1176

1176, 1235, 6636

---

1177

1177, 1236, 2892, 22151, 37929

---

1243

1243, 36029

---

1246

1246, 7560, 10449, 17379

---

1439

1439, 1817, 1895, 19611

---

1903

1446, 1903, 2184, 2287, 18750

---

1987

1987, 3289

---

2435

2435, 4230

---

2574

1113, 2574, 2592, 8115, 15164, 22339

---

2575

1114, 2575, 2593, 8116, 15165, 22340

---

2992

616, 621, 628, 2992, 3180, 11121, 16770, 19713, 19772, 19774, 19776, 19778, 36929

K1053a

2993

617, 622, 627, 2993, 3181, 11122, 16771, 19712, 19773, 19775, 19777, 19779, 36928

K1053b

3426

3426, 15066, 21312, 34289

---

3431

3431, 10298, 11004, 18387

---

3519

5, 95, 3519, 11271, 32002

---

3521

550, 3521

---

3527

3527, 5422, 11414

---

3532

3532, 37672

---

4846

376, 4846, 15454, 36889, 37645

---

5486

1992, 5485, 5486, 7493, 11185

---

5504

186, 328, 5504

---

5505

5505, 37980

---

6145

275, 343, 6145, 12225, 32354

---

6391

25, 305, 6339, 6391, 6392, 40318

---

8044

1330, 1654, 3151, 6625, 8044

---

8795

5562, 8613, 8795, 9290

---

9513

9513, 37918

---

10097

10097, 11634

---

10099

4236, 10099

---

10261

5591, 10261

---

10262

5590, 10262

---

10293

10293, 40112

---

10378

1896, 10378

---

10693

10693, 37783

---

11138

395, 11138, 13484, 40706

---

11139

396, 11139, 13483, 40707

---

11559

11559, 18859

---

11564

10296, 11564

---

11744

11064, 11744, 16080, 16386

---

13472

13472, 38435

---

13622

3629, 13622

---

13623

8703, 13623

---

14220

7471, 14220

---

14380

14380, 15329

---

14457

11433, 14457, 37201

---

14483

14483, 15018

---

14528

14528, 38444

---

14542

11427, 14542

---

14841

3843, 14841

---

14861

548, 14861

---

15002

2937, 15002

---

15077

3146, 15077, 32001, 35510

---

15232

226, 333, 15232, 20245

---

15316

24, 15316, 20563

---

15317

26, 15317, 20564

---

15320

10, 86, 8049, 15320, 17135, 33297

---

15321

83, 141, 1369, 7768, 15321

---

15328

2394, 2407, 15328, 30508, 30509, 30512

---

15453

15453, 40049

---

15740

3522, 11469, 15740, 32000

---

15749

5059, 15749

---

16665

15331, 16665

---

16774

7396, 16774, 20080, 32006, 38259

---

16867

1658, 16867

---

17040

10565, 17040

---

17505

15704, 17505

---

18123

2475, 18123

---

18124

7391, 18124

---

18125

5189, 18125

---

18434

18434, 37638

---

18550

3534, 18550

---

19222

194, 263, 2998, 3212, 6194, 7155, 7766, 18906, 19222, 20023, 24349, 32937

K1037

20029

388, 3436, 5739, 8048, 20029, 30479

---

20421

20421, 35493

---

21400

1657, 21400

---

22334

17811, 22334, 30698, 37874

---

22336

597, 10302, 22336

---

22466

801, 13567, 22466, 22468, 22647

---

26861

3530, 26861

---

28786

27, 306, 28786

---

28787

28, 20336, 28787

---

28788

29, 307, 28788

---

30496

1613, 30496, 32747, 40162

---

32533

3529, 32533

---

32618

5002, 32618

---

32619

5003, 32619

---

33565

3153, 13582, 33565, 37779

---

34135

34135, 41195, 41199

---

34136

34136, 41194, 41198

---

34207

20806, 34207

---

34259

4189, 34259

---

34440

22133, 34440

---

34483

140, 34483, 40410

---

34800

3651, 34800

---

34801

378, 34801

---

34802

7464, 34802

---

34817

7485, 34817

---

35364

2421, 35364

---

35909

110, 850, 7468, 35909

---

36214

237, 17984, 18024, 36214

---

36296

34008, 36296

---

36297

34009, 36297

---

38260

7387, 38260

---

38263

9909, 38263

---

38433

38433, 38434

---

38436

38436, 38437

---

38439

38439, 38440

---

38535

5196, 38535

---

38955

4080, 16704, 17139, 38955

---

40441

7512, 40441

---

 

 

 

Q

X(i) on (K) for i = 2, 4, 69 and

(K)

6

6, 22, 76, 1670, 1671, 18018, 19613

K141

81

1, 65, 75, 81, 314, 321, 1764, 2995, 3869, 16049, 17751, 20028

K254

86

10, 86, 8049, 15320, 17135, 33297

---

141

83, 141, 1369, 7768, 15321

---

183

183, 262

---

193

193, 487, 488, 2996, 13386, 13387, 13428, 13439, 19583, 24243, 24244

K170

230

230, 8781

---

298

13, 298

---

299

14, 299

---

302

17, 302

---

303

18, 303

---

323

74, 94, 146, 323, 1138, 1272, 2071, 3260

K279

325

98, 325

---

333

226, 333, 15232, 20245

---

343

275, 343, 6145, 12225, 32354

---

385

290, 385, 401, 511, 1916, 1972, 25332, 39355

K355

394

64, 394, 2052, 3346, 6225, 6527, 11413, 14615

K235

395

395, 11138, 13484, 40706

---

396

396, 11139, 13483, 40707

---

491

486, 491

---

492

485, 492

---

524

67, 316, 524, 671, 858, 2373, 11061, 13574, 14360, 14364, 34163, 34164, 34165, 34166, 39157

K008

597

597, 10302, 22336

---

599

598, 599, 7850

---

940

940, 34258, 34282

---

966

966, 17732

---

1007

1007, 7612

---

1184

1184, 40831

---

1211

1211, 14534

---

1213

1213, 32014

---

1270

1131, 1270

---

1271

1132, 1271

---

1613

1613, 30496, 32747, 40162

---

1654

1330, 1654, 3151, 6625, 8044

---

1812

1812, 40149, 40457

---

1992

1992, 5485, 5486, 7493, 11185

---

1993

3, 254, 264, 1993, 5392, 40697, 40698

K045

1994

54, 311, 1994, 2888, 3459, 7488, 11140

---

2238

2238, 9510, 40017

---

2287

1446, 1903, 2184, 2287, 18750

---

2407

2394, 2407, 15328, 30508, 30509, 30512

---

2421

2421, 35364

---

2895

1029, 2895, 21287

---

3051

695, 3051, 9230, 37889, 39953, 40016

---

3068

3068, 5490

---

3069

3069, 5491

---

3180

616, 621, 628, 2992, 3180, 11121, 16770, 19713, 19772, 19774, 19776, 19778, 36929

K1053a

3181

617, 622, 627, 2993, 3181, 11122, 16771, 19712, 19773, 19775, 19777, 19779, 36928

K1053b

3231

3231, 34087, 39361

---

3289

1987, 3289

---

3314

3314, 3407

---

3329

3329, 14994

---

3570

3570, 4444

---

3580

30, 265, 340, 1494, 2986, 3580, 12383

K611

3589

3589, 10159, 40002

---

3593

3590, 3593

---

3595

3591, 3595

---

3618

3618, 18840, 39978

---

3619

3619, 18841

---

3620

3620, 5395

---

3629

3629, 13622

---

3936

3936, 24624

---

4383

4383, 40012

---

4417

4417, 13478

---

4648

4648, 32022

---

5235

5235, 30588

---

5422

3527, 5422, 11414

---

5468

5466, 5468

---

5590

5590, 10262

---

5591

5591, 10261

---

5739

388, 3436, 5739, 8048, 20029, 30479

---

6144

6144, 30744

---

6189

3414, 6189

---

6190

3413, 6190

---

6515

68, 317, 6193, 6504, 6515

---

7735

7735, 40824

---

7766

194, 263, 2998, 3212, 6194, 7155, 7766, 18906, 19222, 20023, 24349, 32937

K1037

7774

1352, 7774

---

7777

7777, 34507

---

7779

147, 1031, 2896, 4388, 4645, 5207, 7224, 7261, 7779, 9473, 11606, 20021, 20022, 34214

K1000

7788

7788, 14458

---

7837

3818, 7837

---

8025

6539, 8025

---

8115

1113, 2574, 2592, 8115, 15164, 22339

---

8116

1114, 2575, 2593, 8116, 15165, 22340

---

9182

9180, 9182

---

9770

9770, 11172

---

10601

10601, 33524

---

11004

3431, 10298, 11004, 18387

---

11064

11064, 11744, 16080, 16386

---

11163

11163, 11167

---

11427

11427, 14542

---

11433

11433, 14457, 37201

---

13567

801, 13567, 22466, 22468, 22647

---

14607

512, 670, 14607

---

14829

2051, 14829

---

14997

14997, 40021

---

14999

99, 523, 14221, 14223, 14999

---

15018

14483, 15018

---

15066

3426, 15066, 21312, 34289

---

15108

11538, 15108

---

15533

15533, 17503

---

15589

14484, 15589

---

16704

4080, 16704, 17139, 38955

---

16998

10477, 16998

---

17277

17277, 17758, 40007

---

17379

1246, 7560, 10449, 17379

---

17731

11599, 17731, 20351

---

17778

2893, 3152, 17778

---

17811

17811, 22334, 30698, 37874

---

18134

1751, 18134

---

19623

11611, 19623

---

20080

7396, 16774, 20080, 32006, 38259

---

20536

20536, 20558

---

20806

20806, 34207

---

20965

20965, 31630

---

21356

18842, 21356

---

22133

22133, 34440

---

22151

1177, 1236, 2892, 22151, 37929

---

22329

5503, 22329

---

24512

24512, 40024

---

25508

4651, 25508, 39734

---

26860

26860, 27797

---

27398

8808, 27398

---

27644

3223, 17149, 27644

---

29767

29767, 40515

---

30941

13576, 30941

---

30966

30966, 40718

---

32805

3316, 32805

---

32806

3317, 32806

---

32807

10195, 32807

---

32808

1327, 32808

---

32809

1328, 32809

---

32810

14241, 32810

---

32811

14226, 32811

---

32812

32812, 34089

---

32813

32813, 34091

---

32911

18133, 32911, 35998, 39748, 40013

---

34211

877, 879, 4226, 34211

---

34229

14494, 34229

---

34545

1173, 1232, 2889, 34545

---

37636

37636, 40393

---

37638

18434, 37638

---

37645

376, 4846, 15454, 36889, 37645

---

37652

7538, 37652

---

37657

37657, 40030

---

37668

3424, 37668

---

37669

459, 30552, 37669

---

37671

14492, 37671

---

37672

3532, 37672

---

37673

37673, 40031

---

37680

37680, 39994, 39996

---

37683

10446, 37683

---

37684

145, 4373, 37684

---

37685

7520, 37685

---

37688

7608, 37688

---

37779

3153, 13582, 33565, 37779

---

37783

10693, 37783

---

37784

23, 895, 18019, 37784

---

37792

34899, 37792

---

37894

37892, 37894

---

39099

39099, 39266

---

39113

96, 39113

---

40112

10293, 40112

---

40123

40123, 40178

---

40316

1368, 40316, 40413

---

40318

25, 305, 6339, 6391, 6392, 40318

---

40341

7860, 40341

---

40571

21, 63, 72, 92, 286, 1441, 2997, 3868, 40571

K610

40882

11608, 40882

---

41133

10153, 41133

---

41198

34136, 41194, 41198

---

41199

34135, 41195, 41199

---