Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

Let pK(Ω = p : q : r, P = u : v : w) be a pivotal cubic with isopivot P*, the barycentric quotient Ω ÷ P.

We suppose Ω ≠ P^2 in order to discard pKs decomposed into the cevian lines of P.

This cubic is anharmonically equivalent to K020 = pK(X6, X384) if and only if :

a^2 (b^2 - c^2) (a^4 - b^2 c^2) [(b^2 + c^2)^2 - b^2 c^2] q r u^2 = 0. (E)

(E) can be construed as follows :

• X2, X3114, P^2 ÷ Ω are collinear,

• Ω, Ω x X3114, P^2 are collinear,

• P, P*, P* x X3114 are collinear,

Recall that X3114 = t X3094, X3407 = g X3094, X3314 = t X3407. X x Y denotes the barycentric product of X and Y.

For a given pole Ω, (E) shows that P must lie on a diagonal conic and for a given pivot P, (E) shows that Ω must lie on a circum-conic.

***

The following table shows a large selection of cubics equivalent to K020. W denotes a Weak cubic otherwise it is Strong. See the related Table 67 and also Table 68.

cubic

Ω

P

 

n

X(i) on the cubic for i < 3249

note

K020

X6

X384

 

0

1, 3, 4, 32, 39, 76, 83, 194, 384, 695, 2896, 3224

(1)

K128

X6

X385

 

0

1, 2, 6, 32, 76, 98, 385, 511, 694, 1423, 2319, 3186, 3225, 3229

(2)

K252

X1691

X2

 

0

2, 3, 6, 83, 98, 171, 238, 385, 419, 1429, 1691, 2329

(4)

K322

X1916

X694

 

0

2, 76, 141, 257, 297, 335, 384, 385, 694, 698, 1916, 2998

(5)

K354

X694

X1916

 

0

2, 4, 6, 39, 256, 291, 511, 694, 1432, 1916

(6)

K356

X3978

X76

 

-2

2, 69, 76, 290, 308, 350, 385, 694, 695, 732, 1909

(4)

K421

X3407

X14617

 

 

2, 6, 83, 384, 458, 1031, 3114

 

K422

X6

X5999

 

 

1, 3, 4, 98, 147, 182, 262, 511

 

K423

X6

X3329

 

 

1, 2, 6, 39, 83, 182, 262

 

K432

X32

X1580

W

1

1, 6, 31, 75, 560, 1403, 1580, 1755, 1910, 1967, 2053

(2)

K532

X8789

X694

 

-2

6, 25, 32, 237, 384, 385, 694, 733, 904, 1911, 2076, 3051

(6)

K699

X385

X5989

 

 

98, 147, 1281, 1916

 

K738

X76

X3978

 

-2

2, 6, 75, 76, 290, 325, 698, 1502, 1916

(2)

K739

X385

X6

 

0

2, 6, 83, 194, 239, 287, 385, 732, 894, 1916, 3225

(3)

K743

X76

X9230

 

-2

6, 69, 75, 141, 264, 308, 1031, 1502, 2998

(1)

K787

X9468

X9468

 

2

2, 6, 39, 232, 292, 694, 733, 893, 1691, 1915, 3224, 3229

(5)

K788

X14602

X32

 

2

6, 32, 172, 248, 251, 385, 694, 695, 699, 1613, 1691, 1914

(3)

K789

X1501

X1691

 

2

2, 6, 31, 32, 237, 699, 1501, 1691, 1976

(2)

K861

X14602

X1

W

1

1, 31, 48, 82, 172, 1428, 1580, 1910, 1914, 1927, 1933, 2330

(4)

K862

X385

X75

W

-1

1, 63, 75, 239, 894, 1281, 1447, 1580, 1821, 1966, 1967, 2236, 3112

(4)

K863

X1916

X1934

W

1

1, 38, 75, 92, 257, 335, 1581, 1925, 1926, 1934, 1959

(6)

K864

X9468

X1581

W

-1

1, 19, 31, 292, 893, 1431, 1581, 1755, 1964, 1965, 1966, 1967

(6)

K865

X14603

X561

W

-3

75, 304, 561, 1581, 1920, 1921, 1926, 1966

(4)

K866

X14604

X1967

W

-3

31, 560, 1580, 1582, 1922, 1923, 1927, 1967, 1973

(6)

K985

X2

X1966

W

-1

1, 2, 31, 75, 561, 1581, 1821, 1959, 1966, 2227, 3212

(2)

K989

X1691

X31

W

1

1, 31, 82, 171, 238, 293, 1580, 1581, 1740, 1966, 2236

(3)

K990

X694

X1967

W

1

1, 38, 75, 240, 256, 291, 1580, 1581, 1582, 1967, 2227, 3223

(5)

K991

X8789

X1927

W

3

1, 31, 904, 1911, 1927, 1932, 1933, 1964, 1967

(5)

K992

X3978

X1

W

-1

1, 75, 336, 350, 1909, 1926, 1934, 1966, 3112

(3)

K995

X18896

X1581

W

-1

75, 334, 561, 1581, 1930, 1934, 1965, 1966

(5)

K998

X2

X1965

W

-1

2, 31, 38, 63, 92, 561, 1965, 3112, 3223

(1)

K999

X32

X1582

W

1

6, 19, 48, 75, 82, 560, 1582, 1740, 1964

(1)

K1000

X2

X5207

 

 

2, 4, 69, 147, 1031, 2896

 

K1001

X32

X6660

 

 

3, 6, 25, 2076

 

K1008

X1501

X1915

 

2

2, 25, 31, 184, 251, 1501, 1613, 1915, 3051

(1)

K1012

X3094

X2

 

0

2, 3, 6, 76, 262, 982, 984, 3061, 3094, 3117

(7)

K1013

X18898

X3407

 

0

2, 4, 6, 32, 182, 983, 985, 2344, 3114

(8)

K1014

X3114

X3114

 

2

2, 6, 76, 183, 264, 870, 3114, 3224

(8)

K1015

X3117

X1

 

1

1, 31, 48, 75, 1469, 2186, 2275, 2276, 3056, 3116

(7)

K1016

X18899

X6

 

2

2, 6, 32, 184, 194, 263, 869, 3094, 3117

(7)

K1022

X1502

X1926

W

-3

1, 75, 76, 561, 1926, 1928, 1934

(2)

K1023

X18896

X18896

 

2

2, 76, 141, 264, 325, 334, 1916

(6)

K1024

X18901

X1502

 

-4

76, 305, 1502, 1916

(4)

K1028

X1502

X1925

W

-3

1, 76, 304, 1925, 1928, 1930, 1969

(1)

K1029

X9233

X1933

W

3

1, 31, 32, 560, 1917, 1927, 1933

(2)

K1030

X9233

X1932

W

3

1, 32, 1917, 1923, 1932, 1973

(1)

K1031

X3407

X3113

W

1

1, 31, 75, 92, 3113

(8)

K1032

X3314

X75

W

-1

1, 63, 75, 561, 3116

(7)

K1033

X18902

X6

 

2

6, 32, 184, 251, 1691, 1976, 2210

(4)

K1034

X18903

X9468

 

-4

32, 1501, 1691, 1915, 1974

(6)

K1035

X18904

X2

W

 

2, 10, 37, 238, 1581, 1921, 2887, 3061

 

K1036

X18905

X2

W

 

2, 171, 226, 982, 1214, 1215, 1920, 2887

 

K1037

X2

X18906

 

 

2, 4, 69, 194, 263, 2998, 3212

 

Notes : each number refers to cubics with equations of the same type and with the same color in the table. Furthermore, Kxxxx(n+1) = X(1) x Kxxxx(n) with exceptions K354(n) and K1023(n) for which Kxxxx(n-1) = X(1) x Kxxxx(n). Note that X(1916) is the isotomic conjugate of X(385).

(1) : K020(n) = pK(X1^(2n+2), X1^n x X384)

(2) : K128(n) = pK(X1^(2n+2), X1^n x X385)

(3) : K739(n) = pK(X1^(2n) x X385, X1^(n+2))

(4) : K252(n) = pK(X1^(2n+2) x X385, X1^n)

(5) : K322(n) = pK(X1^(2n) x X1916, X1^(n+2) x X1916)

(6) : K354(n) = pK(X1^(2-2n) x X1916, X1^(-n) x X1916)

(7) : K1012(n) = pK(X1^(2n) x X3094, X1^n)

(8) : K1013(n) = pK(X1^(2-2n) x X3407, X1^(-n) x X3407)

Remarks :

• these equations clearly show that the cubics above are always strong for n even and weak for n odd.

• when Ω = X2 (resp. P = X2), the complement (resp. anticomplement) of pK(Ω, P) is another pK equivalent to K020.

***

Additional data by Peter Moses

The following table shows other cubics passing through at least 10 ETC centers. Most of them are simple barycentric products, see column 3.

Ω, P

X(i) on the cubic pK(Ω, P) for i <18859

products / notes

394, 12215

3, 63, 69, 147, 184, 194, 287, 305, 8858, 12215

X(69) x K128

1916, 8842

2, 262, 325, 427, 1916, 3329, 4518, 5999, 7249, 8842

 

2052, 17984

4, 25, 92, 264, 297, 2998, 9473, 16081, 17984, 18022

X(264) x K128

2207, 419

4, 19, 25, 232, 264, 419, 1974, 3224, 6531, 17980

X(4) x K128

3124, 804

512, 523, 661, 669, 804, 850, 882, 2395, 3569, 18010

X(523) x K128

3314, 325

2, 147, 262, 305, 325, 1916, 3314, 3705, 7179, 9865

note 1

3407, 8840

2, 25, 98, 183, 385, 3407, 5989, 5999, 8840, 9473

note 1

9427, 5027

512, 523, 669, 798, 881, 2422, 2491, 5027, 9426, 9429, 17997

X(512) x K128

14604, 8789

6, 32, 1922, 2211, 3051, 7104, 8789, 9468, 14602, 14946

X(9468) x K739

17493, 7018

2, 8, 238, 256, 350, 4388, 7018, 7261, 17280, 17493

X(257) x K862

note 1 : these two cubics are isotomic transforms from one another.