Home page | Catalogue | Classes | Tables | Glossary | Notations | Links | Bibliography | Thanks | Downloads | Related Curves

Let pK(Ω = p : q : r, P = u : v : w) be a pivotal cubic with isopivot P*, the barycentric quotient Ω ÷ P.

We suppose Ω ≠ P^2 in order to discard pKs decomposed into the cevian lines of P.

This cubic is anharmonically equivalent to K131 = pK(X31, X171) if and only if :

a (b-c) (a^2-b c) (b^2 + b c + c^2) q r u^2 = 0. (E)

(E) can be construed as follows :

• X2, X292, P^2 ÷ Ω are collinear,

• Ω, Ω x X292, P^2 are collinear,

• P, P*, P* x X292 are collinear,

X x Y denotes the barycentric product of X and Y.

For a given pole Ω, (E) shows that P must lie on a diagonal conic and for a given pivot P, (E) shows that Ω must lie on a circum-conic.

***

The following table shows a large selection of cubics equivalent to K131. See the related Table 66 and also Table 68.

cubic

Ω

P

n

X(i) on the cubic for i < 3249

note

K131

X31

X171

1

2, 31, 42, 43, 55, 57, 81, 171, 365, 846, 893, 2162, 2248

(6)

K132

X1

X894

0

6, 7, 9, 37, 75, 86, 87, 192, 256, 366, 894, 1045, 1654

(6)

K135

X1911

X291

1

1, 6, 42, 57, 239, 291, 292, 672, 894, 1757, 1967

(4)

K136

X292

X292

1

1, 2, 37, 87, 171, 238, 241, 291, 292, 1575, 1581, 2664

(3)

K155

X31

X238

1

1, 2, 6, 31, 105, 238, 292, 365, 672, 1423, 1931, 2053, 2054, 2106, etc

(1)

K251

X238

X2

0

1, 2, 9, 86, 238, 239, 292, 673, 893, 1447, 1929, 1966, 2238

(2)

K323

X1

X239

0

1, 2, 6, 75, 239, 291, 366, 518, 673, 1575, 2319, 2669, 3212, 3226

(1)

K673

X1914

X6

1

1, 6, 43, 81, 238, 239, 256, 291, 294, 1580, 2068, 2069, 2238, 2665

(5)

K744

X75

X1909

-1

1, 8, 10, 76, 85, 257, 274, 330, 1655, 1909

(6)

K766

X75

X350

-1

1, 2, 75, 76, 335, 350, 726, 2481

(1)

K767

X350

X75

-1

2, 8, 75, 239, 256, 274, 291, 350, 740, 1281, 2481

(2)

K768

X335

X291

0

2, 10, 75, 239, 291, 330, 335, 726, 894, 1916

(3)

K769

X291

X335

0

1, 2, 7, 37, 291, 335, 350, 518, 694, 1909

(4)

K770

X239

X1

0

1, 2, 86, 192, 239, 257, 335, 350, 385, 740, 3226

(5)

K771

X560

X1914

2

1, 6, 31, 32, 727, 1326, 1403, 1438, 1911, 1914, 2223

(1)

K772

X14598

X292

2

6, 31, 56, 171, 213, 238, 292, 741, 1911, 2223

(4)

K773

X14599

X31

2

6, 31, 58, 238, 292, 727, 893, 1691, 1914, 2176, 2195

(5)

K774

X2210

X1

1

1, 6, 55, 81, 105, 238, 385, 904, 1429, 1911, 1914

(2)

K775

X1922

X1911

2

1, 6, 42, 172, 292, 694, 741, 1458, 1911, 1914, 2162, 3009

(3)

K868

X334

X334

-1

2, 10, 75, 85, 334, 335, 1581, 1920, 1921

(4)

K960

X1914

X8424

 

21, 256, 846, 1281, 1284, 1580

 

K961

X1914

X8301

 

105, 291, 1281, 1282, 1929, 2108

 

K986

X18891

X76

-1

75, 76, 257, 310, 312, 335, 350, 1921, 1926

(2)

K987

X18892

X6

2

6, 31, 41, 58, 1428, 1438, 1580, 1914, 1922, 2210

(2)

K988

X18893

X1911

3

31, 32, 172, 604, 1911, 1914, 1918, 1922, 1927

(4)

K993

X18894

X32

3

31, 32, 904, 1333, 1911, 1914, 1933, 2209, 2210

(5)

K994

X18895

X335

-1

75, 76, 321, 334, 335, 350, 1909, 1934

(3)

K996

X1921

X2

-1

2, 75, 274, 334, 350, 1921, 1966

(5)

K997

X18897

X1922

3

6, 31, 213, 1911, 1922, 1967, 2210

(3)

K1002

X2

X4645

0

2, 7, 8, 1654, 2113

(7)

K1003

X32

X17798

2

6, 55, 56, 2248

(7)

K1006

X560

X172

2

1, 32, 41, 56, 58, 172, 213, 904, 2176

(6)

K1007

X561

X1920

-2

2, 310, 312, 321, 561, 1920

(6)

K1017

X869

X1

 

1, 2, 6, 55, 192, 869, 984, 1002, 2276

 

K1018

X985

X14621

 

1, 2, 6, 7, 870, 985, 1001, 2162, 2344

 

K1019

X18900

X6

 

1, 6, 31, 41, 43, 869, 1469, 2276, 2279

 

K1020

X561

X1921

-2

2, 75, 76, 334, 561, 1921

(1)

K1021

X1917

X2210

3

6, 31, 32, 560, 1922, 2210

(1)

K1025

X6

X3509

1

1, 9, 57, 846, 1282, 1757, 1929

(7)

K1026

X6

X3510

 

1, 43, 87, 1045, 2664, 2665

 

K1038

X984

X2

 

1, 2, 9, 75, 984, 2276

 

K1040

X16514

X1

 

1, 238, 291, 740, 984, 3736, 3783, 3795, 3802, 7220, 7281, 8298, 17793

 

K1041

X2276

X518

 

1, 8, 291, 518, 984, 1002, 1282, 1469, 2113, 3783, 3789, 17794

 

Notes : each number refers to cubics with equations of the same type and with the same color in the table. Furthermore, Kxxxx(n+1) = X(1) x Kxxxx(n). Note that X(335) is the isotomic conjugate of X(239).

(1) : K323(n) = pK(X1^(2n+1), X1^n x X239)

(2) : K251(n) = pK(X1^(2n+1) x X239, X1^n)

(3) : K768(n) = pK(X1^(2n) x X335, X1^(n+1) x X335)

(4) : K769(n) = pK(X1^(2n+1) x X335, X1^n x X335)

(5) : K770(n) = pK(X1^(2n) x X239, X1^(n+1))

(6) : K132(n) = pK(X1^(2n+1), X1^n x X894)

(7) : K1002(n) = pK(X1^(2n), X1^n x X4645)

Remarks :

• these equations clearly show that the cubics above are weak for any n. It follows that the symbolic substitution SS{a -> a^2} transforms each cubic into a strong pK equivalent to K020 as in Table 66.

• when Ω = X2 (resp. P = X2), the complement (resp. anticomplement) of pK(Ω, P) is another pK equivalent to K131.

***

Additional data by Peter Moses

The following table shows other cubics passing through at least 10 ETC centers. All of them are simple barycentric products, see column 3.

Ω, P

X(i) on the cubic pK(Ω, P) for i <18859

products

200, 3685

8, 9, 55, 192, 312, 3685, 3693, 4182, 4876, 14942

X(8) x K323

269, 7176

1, 56, 65, 85, 279, 1432, 1434, 3212, 7153, 7176, 17084

X(7) x K132

341, 17787

9, 75, 314, 346, 2321, 3596, 4110, 4451, 7155, 17787

X(8) x K744

756, 740

10, 37, 42, 321, 740, 3930, 4179, 6542, 13576, 17759

X(10) x K323

756, 1215

2, 42, 210, 226, 321, 756, 1215, 3971, 4179, 16606

X(10) x K132

765, 3570

100, 101, 190, 660, 666, 668, 1026, 3570, 8709, 17934

X(668) x K155

765, 18047

99, 101, 644, 664, 668, 932, 1018, 3903, 4595, 18047

X(668) x K131

1253, 2329

1, 8, 21, 41, 220, 1334, 2053, 2329, 3208, 4166, 8931

X(9) x K132

1253, 3684

8, 9, 41, 43, 55, 294, 1282, 2340, 3684, 4166, 7077, 8851

X(9) x K323

3248, 659

513, 514, 649, 659, 665, 667, 1027, 3572, 6373, 18001

X(513) x K323

4037, 37

2, 10, 37, 740, 1655, 3948, 3971, 4037, 4039, 4368

X(10) x K770

8300, 385

350, 385, 1447, 1914, 2238, 3509, 3510, 3684, 8844, 18786

X(239) x K132

8300, 4366

1, 238, 239, 350, 1914, 3253, 4366, 6654, 8299, 17475

X(239) x K323